Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (5): 88-95    DOI: 10.13523/j.cb.20190510
研究报告     
基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *
马占兵1,2,党洁1,2,杨继辉3,霍正浩1,2,**(),徐广贤4()
1 宁夏医科大学基础医学院医学遗传系与细胞生物学系 银川 750004
2 宁夏回族自治区生育力保持教育部重点实验室 银川 750004
3 宁夏医科大学科技中心 银川 750004
4 宁夏医科大学临床医学院 银川 750004
Establishment and Application of Dual Fluorescent Labeling Multi-functional Autophagy Flux Monitoring System Based on Lentiviral System
Zhan-bing MA1,2,Jie DANG1,2,Ji-hui YANG3,Zheng-hao HUO1,2,**(),Guang-xian XU4()
1 Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004,China
2 Key Laboratory of Fertility Conservation of Ministry of Education, Ningxia Hui Autonomous Region, Yinchuan 750004,China
3 Science and Technology Center, Ningxia Medical University, Yinchuan 750004,China
4 Clinical College, Ningxia Medical University, Yinchuan 750004,China
 全文: PDF(4244 KB)   HTML
摘要:

目的:构建能够用于稳定动态监测细胞自噬流变化和过表达基因的红色荧光蛋白-绿色荧光蛋白-鼠源LC3融合慢病毒多功能表达载体(PCDH-Duo-mRFP-eGFPph-LC3rat,PCDH-Duo), 并构建小鼠腹腔巨噬细胞Raw264.7稳转株观察自噬流变化。方法:应用基于PCR精确合成mRFP-eGFPph-LC3rat融合全基因,将其克隆至慢病毒表达载体PCDH-CMV-MCS-EF1a-GFP中,重组质粒经菌落PCR、酶切及测序分析正确无误后, 包装慢病毒,转染Raw264.7细胞,并利用流式分选术获取稳转株,经氯喹抑制自噬模型及Western blot鉴定eGFP蛋白表达确认其可靠性。结果:成功构建了PCDH-Duo重组慢病毒质粒,包被慢病毒并获得Raw264.7稳定细胞系(Raw264.7-PCDH-Duo),可稳定表达双荧光蛋白,经3mmol/L氯喹作用6h后,能够稳定准确指示自噬流变化。结论:成功构建了基于慢病毒系统的双荧光标记多功能自噬流监测系统,为研究细胞自噬与编码基因及非编码基因之间的关系提供了方便有力的工具。

关键词: 自噬流载体构建慢病毒mRFP-eGFP-LC3    
Abstract:

Objective: To construct a red fluorescent protein-green fluorescent protein-murine LC3 fusion multi-lentiviral expression vector (PCDH-Duo-mRFP-eGFPph-LC3rat, PCDH-Duo),which can be used to stably monitor the changes of autophagy flux and overexpression genes. Changes in autophagic flow were observed in the mouse peritoneal macrophage Raw264.7 stable strain.Methods:The mRFP-eGFPph-LC3rat fusion gene was synthesized by PAS and cloned into the lentiviral expression vector PCDH-CMV-MCS-EF1a-copGFP. After the recombinant plasmid was correctly analyzed by PCR, enzyme digestion and sequencing, the lentivirus was packaged. Raw264.7 cells were transfected, and stable cells were obtained by FACS. The reliability of the eGFP protein expression system was confirmed by CQ autophagy inhibition model and Western blot.Results:The recombinant plasmid of PCDH-Duo lentivirus was successfully constructed, which was coated with lentivirus and obtained stable cell line of Raw264.7. The expression of double fluorescent protein was stable. After induction by 3mmol/L CQ for 6h, it was stable and accurate. The phasing changes.Conclusion:The dual-fluorescence multi-function autophagic flux monitoring system based on lentivirus system was successfully constructed, which provides a convenient and powerful tool for studying the relationship between autophagy and coding genes and non-coding genes.

Key words: Autophagic flux    Vector construction    Lentivirus    mRFP-eGFP-LC3
收稿日期: 2018-11-08 出版日期: 2019-06-04
ZTFLH:  Q819  
基金资助: * 宁夏回族自治区自然科学基金面上项目(2018AAC03088);宁夏科技创新领军人才项目资助项目(KJT2015020)
通讯作者: 霍正浩     E-mail: huozhh@163.com;xuguangxian@nxmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马占兵
党洁
杨继辉
霍正浩
徐广贤

引用本文:

马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.

Zhan-bing MA,Jie DANG,Ji-hui YANG,Zheng-hao HUO,Guang-xian XU. Establishment and Application of Dual Fluorescent Labeling Multi-functional Autophagy Flux Monitoring System Based on Lentiviral System. China Biotechnology, 2019, 39(5): 88-95.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190510        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I5/88

Primer
ID
Name Sequence (5'-3')
P1 Cmv-F CGCAAATGGGCGGTAGGCGTG
P2 mRFP-EGFP-LC3-Seq1 GCCGTTACAGATCCAAGC
P3 mRFP-EGFP-LC3-Seq2 ACGCTGAGGTCAAGACCA
P4 mRFP-EGFP-LC3-V-seqR TGAAAGCCATACGGGAAG
表1  载体全长基因测序引物
图1  重组载体图谱及蛋白质同源建模
图2  全长融合基因PAS合成(a)、菌落PCR鉴定(b)、限制性内切酶分析(c)及测序验证(d)
图3  293T慢病毒包装48h荧光结果
图4  重组PCDH-Duo慢病毒(PCDH-Duo-Lv)感染Raw264.7细胞72h结果(MOI=10)
图5  流式分选双荧光标记的Raw264.7细胞
图6  EGFP 蛋白表达检测(Mock:Raw264.7)
图7  CQ抑制Raw264.7-PCDH-Duo稳转株自噬模型自噬潮检测
[1] Chun Y, Kim J . Autophagy: an essential degradation program for cellular homeostasis and life. Cells, 2018,7(12):278-304.
doi: 10.3390/cells7120278
[2] Gottlieb R A, Andres A M, Sin J , et al. Untangling autophagy measurements: all fluxed up. Circulation Research, 2015,116(3):504-514.
doi: 10.1161/CIRCRESAHA.116.303787
[3] Hurley J H, Nogales E . Next-generation electron microscopy in autophagy research. Current Opinion in Structural Biology, 2016,41:211-216.
doi: 10.1016/j.sbi.2016.08.006
[4] Kimura S, Fujita N, Noda T , et al. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods in Enzymology, 2009,452:1-12.
doi: 10.1016/S0076-6879(08)03601-X
[5] Ktistakis N T . Monitoring the localization of MAP1LC3B by indirect immunofluorescence. Cold Spring Harbor Protocols, 2015,2015(8):751-755.
[6] Shen Z Y, Xu L Y, Li E M , et al. Autophagy and endocytosis in the amnion. Journal of Structural Biology, 2008,162(2):197-204.
doi: 10.1016/j.jsb.2006.10.010
[7] Tanida I, Waguri S. Measurement of autophagy in cells and tissues: methods in molecular biology (methods and protocols). New York:Humana Press, 2010: 193-214.
[8] Kabeya Y, Mizushima N, Ueno T , et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 2000,19(21):5720-5728.
doi: 10.1093/emboj/19.21.5720
[9] Tanida I, Ueno T, Kominami E . LC3 conjugation system in mammalian autophagy. The International Journal of Biochemistry & Cell Biology, 2004,36(12):2503-2518.
[10] Turksen K. Autophagy in differentiation and tissue maintenance: methods and protocols (methods in molecular biology). New York: Humana Press, 2018: 209-222.
[11] Zhou C, Zhong W, Zhou J , et al. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy, 2012,8(8):1215-1226.
doi: 10.4161/auto.20284
[12] Tang Z H, Cao W X, Wang Z Y , et al. Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells. Redox Biology, 2017,12:367-376.
doi: 10.1016/j.redox.2017.03.009
[13] Mahon M J . pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Advances in Bioscience and Biotechnology, 2011,2(3):132-137.
doi: 10.4236/abb.2011.23021
[14] Sena-Esteves M, Gao G . Titration of lentivirus vectors. Cold Spring Harbor protocols, 2018,2018(4):281-285.
[15] Min Z, Ting Y, Mingtao G , et al. Monitoring autophagic flux using p62/SQSTM1 based luciferase reporters in glioma cells. Experimental Cell Research, 2018,363(1):84-94.
doi: 10.1016/j.yexcr.2017.12.027
[16] Iwashita H, Sakurai H T, Nagahora N , et al. Small fluorescent molecules for monitoring autophagic flux. FEBS Letters, 2018,592(4):559-567.
doi: 10.1002/feb2.2018.592.issue-4
[17] Gretzmeier C, Eiselein S, Johnson G R , et al. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy. Autophagy, 2017,13(6):1064-1075.
doi: 10.1080/15548627.2016.1274485
[18] Kuma A, Komatsu M, Mizushima N . Autophagy-monitoring and autophagy-deficient mice. Autophagy, 2017,13(10):1619-1628.
doi: 10.1080/15548627.2017.1343770
[19] Adiseshaiah P P, Skoczen S L, Rodriguez J C , et al. Autophagy monitoring assay II: Imaging autophagy induction in LLC-PK1 cells using GFP-LC3 protein fusion construct(methods in molecular biology).New York: Humana Press, 2018: 211-219.
[20] Lina T T, Luo T, Velayutham T S , et al. Ehrlichia activation of Wnt-PI3K-mTOR signaling inhibits autolysosome generation and autophagic destruction by the mononuclear phagocyte. Infection & Immunity, 2017,85(12):690-707.
[21] Bampton E T, Goemans C G, Niranjan D , et al. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy, 2005,1(1):23-36.
doi: 10.4161/auto.1.1.1495
[22] Koo V, Lee A, Eldin O S , et al. pcDNA3.1td tomato is superior to pDsRed2-N1 for optical huorescence imaging in the F344/AY-27 rat model of bladder cancer. Molecular Imaging & Biology, 2010,12(5):509-519.
[23] Zhu B S, Yu L Y, Zhao K , et al. Effects of small interfering RNA inhibit class I phosphoinositide 3-kinase on human gastric cancer cells. World Journal of Gastroenterology, 2013,19(11):1760-1769.
doi: 10.3748/wjg.v19.i11.1760
[24] Pugsley H R . Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J Vis Exp, 2017,125(e55637):55637-55637.
[25] Maulucci G, Chiarpotto M, Papi M , et al. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates. Autophagy, 2015,11(10):1905-1916.
doi: 10.1080/15548627.2015.1084455
[26] Hale C M, Cheng Q, Ortuno D , et al. Identification of modulators of autophagic flux in an image-based high content siRNA screen. Autophagy, 2016,12(4):713-726.
doi: 10.1080/15548627.2016.1147669
[27] Klionsky D J, Abdelmohsen K, Abe A , et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2016,12(1):1-222.
doi: 10.1080/15548627.2015.1100356
[28] 王婉, 张庆, 赵润鹏 , 等. 稳定表达RFP-GFP- LC3的RAW264.7细胞株的建立. 细胞与分子免疫学杂志, 2015,31(9):1175-1179.
Wang W, Zhang Q, Zhao RP , et al. Establishment of RAW264.7 cell line stably expressing RFP-GFP-LC3. Journal of Cellular and Molecular Immunology, 2015,31(9):1175-1179.
[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[3] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[4] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[5] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[6] 田聪慧, 谢雪梅, 李英, 尹晓东, 韩军, 李军. 基于IRES序列的多基因共表达载体构建[J]. 中国生物工程杂志, 2017, 37(7): 97-104.
[7] 左志宇, 辛灵彪, 杨洁, 王鑫廷. SND1转基因小鼠的构建[J]. 中国生物工程杂志, 2016, 36(4): 97-103.
[8] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[9] 宗鑫, 胡汪洋, 汪以真. 猪髓样分化因子MyD88特异性shRNA干扰载体的构建筛选及干扰效果评价[J]. 中国生物工程杂志, 2015, 35(7): 1-7.
[10] 高越, 檀硕, 任兆瑞, 张敬之. 原位染色检测慢病毒载体转录通读方法的建立[J]. 中国生物工程杂志, 2015, 35(5): 55-60.
[11] 梁振鑫, 尹富强, 刘庆友, 李力. 转基因动物乳腺生物反应器相关技术及研究进展[J]. 中国生物工程杂志, 2015, 35(2): 92-98.
[12] 刘雪杰, 林巍然, 唐立春, 孙薇, 魏汉东, 姜颖. 慢病毒载体介导RAB27A基因过表达对人HepG2肝癌细胞增殖的影响[J]. 中国生物工程杂志, 2014, 34(9): 16-23.
[13] 李玉强, 朱志图, 王巍, 李谌, 徐娜, 王钰, 李男, 孙宏治. RNA干扰NUP88基因对人乳腺癌MCF-7细胞生长及侵袭力的影响[J]. 中国生物工程杂志, 2014, 34(9): 31-39.
[14] 秦瑶, 赵鸿彦, 张文航, 王冬梅. 线粒体转录因子A敲低转基因小鼠的研制[J]. 中国生物工程杂志, 2014, 34(7): 44-48.
[15] 付辉, 李菲菲, 马琼, 付怀秀, 崔玉芳, 毛建平. 逆转录法筛选mRNA靶点设计核酶对GPA的表达干预实验研究[J]. 中国生物工程杂志, 2014, 34(3): 84-90.