Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (9): 16-23    DOI: 10.13523/j.cb.20140904
研究报告     
慢病毒载体介导RAB27A基因过表达对人HepG2肝癌细胞增殖的影响
刘雪杰1,2, 林巍然2, 唐立春2, 孙薇2, 魏汉东2, 姜颖1,2
1. 安徽医科大学 合肥 230032;
2. 军事医学科学院放射与辐射医学研究所 蛋白质组学国家重点实验室 北京蛋白质组研究中心 北京 102206
Construction of Lentiviral Expression Vector Expressing Human RAB27A and Investigation Its Effect on the Proliferation of HepG2 Cell Lines
LIU Xue-jie1,2, LIN Wei-ran2, TANG Li-chun2, SUN Wei2, WEI Han-dong2, JIANG Ying1,2
1. Graduate School, Anhui Medical University, Hefei 230032, China;
2. State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
 全文: PDF(1584 KB)   HTML
摘要:

目的:构建RAB27A基因慢病毒表达载体,并研究RAB27A 对人HepG2肝癌细胞增殖能力的影响。方法:以pEGFP-C1-RAB27A质粒为模板,PCR扩增出融合绿色荧光蛋白的RAB27A基因全长,酶切后插入穿梭载体pENTR/U6,再应用Gateway技术,基因重组到表达载体pHAGE-EF1α-puro-DEST上,构建得到重组慢病毒表达载体pHAGE-GFP-RAB27A-puro。测序鉴定序列正确后,将其与包装质粒psPAX2和包膜质粒pMD2.G共转HEK-293T细胞进行慢病毒包装。收集并浓缩培养上清以获得慢病毒颗粒感染HepG2细胞。荧光显微镜下观察HEK-293T细胞和慢病毒感染HepG2细胞绿色荧光强度;Western blot检测稳定感染HepG2细胞株RAB27A 蛋白表达水平;CCK8和平皿克隆形成实验检测稳定过表达RAB27A的HepG2细胞增殖活力的变化;流式细胞术检测稳定过表达RAB27A的HepG2细胞周期分布情况。结果:经双酶切及测序结果证实重组慢病毒表达载体构建正确;浓缩后病毒滴度较高;重组慢病毒感染HepG2细胞后,细胞外源RAB27A的蛋白表达水平显著上调,HepG2细胞的增殖活力和克隆形成能力受到明显抑制(P<0.01),S期细胞分布比例明显降低(P<0.01)。结论: RAB27A 基因重组慢病毒表达载体构建成功,外源过表达RAB27A 基因可显著抑制HepG2细胞增殖能力。RAB27A在肝细胞癌发生发展和迁移中扮演了重要角色。

关键词: RAB27A慢病毒细胞增殖肝细胞癌    
Abstract:

Objective:To over express RAB27A by lentiviral system in human hepatocellular carcinoma (HCC) cell line HepG2 and investigate the effect.Methods:GFP-RAB27A protein coding gene sequences were amplified from plasmid pEGFP-C1-RAB27A, the PCR products were digested by double restriction enzymes and cloned into shuttle plasmid pENTR/U6, then pHAGE-GFP-RAB27A vector were constructed by Gateway technology. Recombinant plasmid pHAGE-GFP-RAB27A was mixed with the packaging plasmid(psPAX2)and the envelope plasmid (pMD2.G)and then co-transfected into HEK-293T cells. HepG2 cells were transfected with concentrated recombinant lentivirus particle. Western blot analysis were used to detect RAB27A expression in HepG2 cell lines. The proliferative activity was determined by CCK-8 and colony forming assay and the cell cycle analysis by flow cytometry. Results:The recombinant lentiviral expression vector pHAGE-GFP-RAB27A was constructed correctly. After transfected to HEK-293T, the lentivirus was successfully prepared. Strong green fluorescence was observed in transfected HepG2 cells under fluorescent microscope which showed the recombinant lentivirus expressing. The RAB27A protein was over expressed showed by Western-blot. The proliferation of infected HepG2 showed inhibited, and the percentage of S-phase cells was obviously decreased (P<0.01). Conclusion: The exogenous over expressed RAB27A was found inhibited the proliferation of transfected HepG2 cell lines. RAB27A is a key protein in the hepatocellular carcinogenesis and proliferation.

Key words: RAB27A    Lentivirus    Hepatocellular carcinoma    Cell proliferation
收稿日期: 2014-04-27 出版日期: 2014-09-25
ZTFLH:  Q78  
基金资助:

国家“973”计划(2013CB910502);国家自然科学基金面上项目(30972909)资助项目

通讯作者: 姜颖     E-mail: jiangying304@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘雪杰, 林巍然, 唐立春, 孙薇, 魏汉东, 姜颖. 慢病毒载体介导RAB27A基因过表达对人HepG2肝癌细胞增殖的影响[J]. 中国生物工程杂志, 2014, 34(9): 16-23.

LIU Xue-jie, LIN Wei-ran, TANG Li-chun, SUN Wei, WEI Han-dong, JIANG Ying. Construction of Lentiviral Expression Vector Expressing Human RAB27A and Investigation Its Effect on the Proliferation of HepG2 Cell Lines. China Biotechnology, 2014, 34(9): 16-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140904        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I9/16


[1] Parkin D M, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA: A Cancer Journal for Clinicians, 2005, 55(2): 74-108.

[2] Jemal A, Bray F, Center M M, et al. Global cancer statistics. CA: A Cancer Journal for Clinicians, 2011, 61(2): 69-90.

[3] El-Serag H B, Rudolph K L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7): 2557-2576.

[4] Yang L, Parkin D M, Li L D, et al. Estimation and projection of the national profile of cancer mortality in China: 1991-2005. British Journal of Cancer, 2004, 90(11): 2157-2166.

[5] Aravalli R N, Steer C J, Cressman E N K. Molecular mechanisms of hepatocellular carcinoma. Hepatology, 2008, 48(6): 2047-2063.

[6] Ricke J, Seidensticker M, Mohnike K. Noninvasive diagnosis of hepatocellular carcinoma in cirrhotic liver: current guidelines and future prospects for radiological imaging. Liver Cancer, 2012, 1(1): 51-58.

[7] Walzer N, Kulik L M. Hepatocellular carcinoma: latest developments. Current Opinion in Gastroenterology, 2008, 24(3): 312-319.

[8] Blechacz B, Splinter PL, Greiner S, et al. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology, 2006, 44(6): 1465-1477.

[9] Fang Z L, Sabin C A, Dong B Q, et al. HBV A1762T, G1764A mutations are a valuable biomarker for identifying a subset of male HBsAg carriers at extremely high risk of hepatocellular carcinoma: a prospective study. The American Journal of Gastroenterology, 2008, 103(9): 2254-2262.

[10] László L. Predictive and prognostic factors in the complex treatment of patients with colorectal cancer. Magyar Onkologia, 2010, 54(4): 383-394.

[11] Sterling R K, Wright E C, Morgan T R, et al. Frequency of elevated hepatocellular carcinoma (HCC) biomarkers in patients with advanced hepatitis C. The American Journal of Gastroenterology, 2011.

[12] Mamidipudi V, Zhang J, Lee K C, et al. RACK1 regulates G1/S progression by suppressing Src kinase activity. Molecular and Cellular Biology, 2004, 24(15): 6788-6798.

[13] Corbeel L, Freson K. Rab proteins and Rab-associated proteins: major actors in the mechanism of protein-trafficking disorders. European Journal of Pediatrics, 2008, 167(7): 723-729.

[14] Seabra M C, Mules E H, Hume A N. Rab GTPases, intracellular traffic and disease. Trends in Molecular Medicine, 2002, 8(1): 23-30.

[15] Stenmark H, Olkkonen V M. The rab gtpase family. Genome Biol, 2001, 2(5): S3007.

[16] Pfeffer S. A model for Rab GTPase localization. Biochemical Society Transactions, 2005, 33(4): 627-630.

[17] Zerial M, McBride H. Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2001, 2(2): 107-117.

[18] Pereira-Leal J B, Seabra M C. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. Journal of Molecular Biology, 2000, 301(4): 1077-1087.

[19] Bem D, Yoshimura S I, Nunes-Bastos R, et al. Loss-of-Function Mutations in RAB18 Cause Warburg Micro Syndrome. The American Journal of Human Genetics, 2011, 88(4): 499-507.

[20] Verhoeven K, De Jonghe P, Coen K, et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. The American Journal of Human Genetics, 2003, 72(3): 722-727.

[21] Jenkins D, Seelow D, Jehee F S, et al. RAB23 mutations in carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. The American Journal of Human Genetics, 2007, 80(6): 1162-1170.

[22] Ménasché G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genetics, 2000, 25(2): 173-176.

[23] Giannandrea M, Bianchi V, Mignogna M L, et al. Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. The American Journal of Human Genetics, 2010, 86(2): 185-195.

[24] Huizing M, Helip-Wooley A, Westbroek W, et al. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annual Review of Genomics and Human Genetics, 2008, 9: 359.

[25] Anant J S, Desnoyers L, Machius M, et al. Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry, 1998, 37(36): 12559-12568.

[26] Larijani B, Hume A N, Tarafder A K, et al. Multiple factors contribute to inefficient prenylation of RAB27A in Rab prenylation diseases. Journal of Biological Chemistry, 2003, 278(47): 46798-46804.

[27] Fukuda M. Versatile role of Rab27 in membrane trafficking: focus on the Rab27 effector families. Journal of Biochemistry, 2005, 137(1): 9-16.

[28] Wu X, Hu A, Zhang M, et al. Effects of RAB27A on proliferation, invasion, and anti-apoptosis in human glioma cell. Tumor Biology, 2013, 34(4): 2195-2203.

[29] Li W, Mu D, Tian F, et al. Exosomes derived from RAB27A?overexpressing tumor cells elicit efficient induction of antitumor immunity. Molecular Medicine Reports, 2013, 8(6): 1876-1882.

[30] Wang J S, Wang F B, Zhang Q G, et al. Enhanced expression of RAB27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Molecular Cancer Research, 2008, 6(3): 372-382.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[3] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[4] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[5] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[6] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[7] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[8] 徐燕,刘正芸,张琬棂,王盛羽,王欢. 靶向干扰TAGLN表达对HBV阳性肝癌细胞生物学行为的影响及机制初探 *[J]. 中国生物工程杂志, 2019, 39(11): 13-21.
[9] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[10] 苟理尧,刘梦瑶,夏菁,万群,孙恃雷,唐敏,张彦. 骨形成蛋白9对人膀胱癌BIU-87细胞增殖和迁移的影响[J]. 中国生物工程杂志, 2018, 38(5): 10-16.
[11] 李依蔓,周钦. Herpud1对后肾间充质细胞的作用及其机制的探讨*[J]. 中国生物工程杂志, 2018, 38(3): 9-15.
[12] 冯源, 唐云, 徐蕾, 谭海刚. 海藻多糖通过下调肝癌细胞Hep3B糖酵解途径抑制细胞增殖和迁移[J]. 中国生物工程杂志, 2017, 37(9): 31-40.
[13] 梁姗, 蒋子川, 冯均. 胭脂萝卜花青素提取及对NCI-N87细胞增殖侵袭的影响[J]. 中国生物工程杂志, 2017, 37(11): 101-108.
[14] 汤志雄, 苟德明. miRNA调控成肌分化的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 103-110.
[15] 秦海霞, 崔红凯, 潘莹, 户瑞丽, 朱利红, 王世进. miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1对卵巢癌细胞增殖的影响[J]. 中国生物工程杂志, 2016, 36(6): 24-31.