Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (7): 97-104    DOI: 10.13523/j.cb.20170716
技术与方法     
基于IRES序列的多基因共表达载体构建
田聪慧1, 谢雪梅1, 李英1, 尹晓东2, 韩军1, 李军1
1. 聊城大学药学院 生物制药研究院 聊城 252000;
2. 宜兴市赛尔生物科技有限公司 宜兴 214200
Construction of the IRES-based Vector for Multiple Gene Co-expression
TIAN Cong-hui1, XIE Xue-mei1, LI Ying1, YIN Xiao-dong2, HAN Jun1, LI Jun1
1. School of Pharmacy and Institute of BioPharmaceutical Rescarch, Liaocheng University, Liaocheng 252000, China;
2. Yixing Cell Biotechnology Limited Company, Yixing 214200, China
 全文: PDF(1441 KB)   HTML
摘要: 目的:构建一个IRES序列介导的多基因共表达载体,实现两个目的基因和筛选标记基因共用一个启动子高效表达,提高多基因稳定共表达细胞株的筛选效率。方法:以实验室前期构建的载体pLV-MCS-Puro为骨架,设计并全基因合成双基因克隆表达元件,连接到骨架载体,构建多基因共表达载体pLV-2MCS-Puro,以DsRed2和EGFP荧光蛋白基因验证该载体用于多基因稳定共表达细胞株筛选的效率。结果:成功构建了pLV-2MCS-Puro载体以及DsRed2和EGFP共表达重组质粒pLV-DsRed2-EGFP-Puro。瞬时转染实验证明该载体能介导多基因共表达。抗性筛选获得了MDCK和HeLa两种细胞的多基因稳定共表达细胞池。细胞池涂片荧光显微镜观察和计数表明抗性细胞池DsRed2和EGFP双阳率接近100%。基因组和转录水平PCR及蛋白质免疫印迹实验表明,DsRed2和EGFP稳定整合到抗性细胞基因组,并且两种蛋白质表达水平较为一致。结论:成功构建了多基因共表达载体pLV-2MCS-Puro,实现了两个目的基因和抗性基因串联共表达,并且具有高效的多基因稳定共表达细胞株筛选效率。该载体在研究蛋白质相互作用及工程细胞构建等方面具有一定的应用前景。
关键词: 基因共表达载体构建IRES    
Abstract: Objective: An IRES-based vector was constructed to achieve co-expression of two target genes with the screening marker gene promoted by the single promoter, and to improve the screening efficiency of multiple genes co-stable expression cell lines. Methods: A bicistronic expression element BamHI-MCS1-IRES-MCS2-IRES-BsiWI which has two multiple cloning sites was designed and synthesized. The vector named pLV-2MCS-Puro was constructed by inserting the element into the skeleton vector pLV-MCS-Puro which was constructed previously in lab. The DsRed2 and EGFP genes were inserted simultaneously into the vector to test the screening efficiency of multiple genes co-stable expression cell lines. Results: The vector pLV-2MCS-Puro and the recombinant plasmid pLV-DsRed2-EGFP-Puro were constructed successfully. Transient transfection experiment showed that the vector can mediate co-expression of multiple genes. MDCK and HeLa cell pools resistant to puromycin were obtained through transfection of the recombinant plasmid. The fluorescent inverted microscope showed that DsRed2 gene at the upstream of the IRES sequence and EGFP gene at the downstream of IRES sequence were co-expressed in cells, and the double positive rate was close to 100%. It indicated that this vector has high screening efficiency. The results of genomic PCR, RT-PCR and Western blot showed that DsRed2 and EGFP genes were stably integrated into cell genome and the two proteins were expressed consistently. Conclusion: The IRES-based vector pLV-2MCS-Puro was successfully constructed and proved to be efficiently in screening multiple genes co-stable expression cell lines. This vector will have certain application prospects in studying protein interactions and constructing engineering cell lines.
Key words: Gene coexpression    IRES    Vector construction
收稿日期: 2017-02-07 出版日期: 2017-07-25
ZTFLH:  Q782  
基金资助: 国家自然科学基金青年项目(81402512)、聊城市科技发展计划项目(2014GJH11)、泰山学者工程专项资助项目
通讯作者: 李军     E-mail: think.a@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢雪梅
李英
韩军
尹晓东
田聪慧
李军

引用本文:

田聪慧, 谢雪梅, 李英, 尹晓东, 韩军, 李军. 基于IRES序列的多基因共表达载体构建[J]. 中国生物工程杂志, 2017, 37(7): 97-104.

TIAN Cong-hui, XIE Xue-mei, LI Ying, YIN Xiao-dong, HAN Jun, LI Jun. Construction of the IRES-based Vector for Multiple Gene Co-expression. China Biotechnology, 2017, 37(7): 97-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170716        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I7/97

[1] Allera-Moreau C, Chomarat P, Audinot V, et al. The use of IRES-based bicistronic vectors allows the stable expression of recombinant G-protein coupled receptors such as NPY5 and histamine 4. Biochimie, 2006, 88(6):737-746.
[2] Pelletier J,Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988, 334(6180):320-325.
[3] Jang S K, Krausslich H G, Nicklin M J, et al. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of Virology, 1988, 62(8):2636-2643.
[4] Lewis S M, Holcik M. For IRES trans-acting factors, it is all about location. Oncogene, 2008, 27(8):1033-1035.
[5] Lu J, Zhang J, Lin M, et al. IRES: translation element of RNA viruses. Chinese Journal of Biochemistry & Molecular Biology, 2007, 27(03):513-518.
[6] Jackson R J, Hellen C U, Pestova T V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews. Molecular Cell Biology, 2010, 11(2):113-127.
[7] Chappell S A, Edelman G M, Mauro V P. Ribosomal tethering and clustering as mechanisms for translation initiation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(48):18077-18082.
[8] Shatsky I N, Dmitriev S E, Terenin I M, et al. Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Molecules and Cells, 2010, 30(4):285-293.
[9] Komar A A, Hatzoglou M. Internal ribosome entry sites in cellular mRNAs: mystery of their existence. Journal of Biological Chemistry, 2005, 280(25):23425-23428.
[10] Misteli T, Spector D L. Applications of the green fluorescent protein in cell biology and biotechnology. Nature Biotechnology, 1997, 15(10):961-964.
[11] Fussenegger M, Moser S, Bailey J E. pQuattro vectors allow one-step multigene metabolic engineering and auto-selection of quattrocistronic artificial mammalian operons. Cytotechnology, 1998, 28(1-3):229-235.
[12] Martinez-Salas E, Lopez de Quinto S, Ramos R, et al. IRES elements: features of the RNA structure contributing to their activity. Biochimie, 2002, 84(8):755-763.
[13] Martinez-Salas E. Internal ribosome entry site biology and its use in expression vectors. Current Opinion in Biotechnology, 1999, 10(5):458-464.
[14] Liu X, Constantinescu S N, Sun Y, et al. Generation of mammalian cells stably expressing multiple genes at predetermined levels. Analytical Biochemistry, 2000, 280(1):20-28.
[15] Murakami M, Watanabe H, Niikura Y, et al. High-level expression of exogenous genes by replication-competent retrovirus vectors with an internal ribosomal entry site. Gene, 1997, 202(1-2):23-29.
[16] Rayssac A, Neveu C, Pucelle M, et al. IRES-based vector coexpressing FGF2 and Cyr61 provides synergistic and safe therapeutics of lower limb ischemia. Molecular Therapy, 2009, 17(12):2010-2019.
[17] Jazwa A, Tomczyk M, Taha H M, et al. Arteriogenic therapy based on simultaneous delivery of VEGF-A and FGF4 genes improves the recovery from acute limb ischemia. Vasc Cell, 2013, 5(1):13.
[18] Zhang C, Wang K Z, Qiang H, et al. Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacologica Sinica, 2010, 31(7):821-830.
[19] Ngoi S M, Chien A C, Lee C G. Exploiting internal ribosome entry sites in gene therapy vector design. Current Gene Therapy, 2004, 4(1):15-31.
[20] Cepko C L, Roberts B E, Mulligan R C. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell, 1984, 37(3):1053-1062.
[21] Korman A J, Frantz J D, Strominger J L, et al. Expression of human class Ⅱ major histocompatibility complex antigens using retrovirus vectors. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(8):2150-2154.
[22] Fallot S, Ben Naya R, Hieblot C, et al. Alternative-splicing-based bicistronic vectors for ratio-controlled protein expression and application to recombinant antibody production. Nucleic Acids Research, 2009, 37(20):e134.
[23] Doronina V A, Wu C, de Felipe P, et al. Site-specific release of nascent chains from ribosomes at a sense codon. Molecular and Cellular Biology, 2008, 28(13):4227-4239.
[24] de Felipe P, Luke G A, Hughes L E, et al. E unum pluribus: multiple proteins from a self-processing polyprotein. Trends in Biotechnology, 2006, 24(2):68-75.
[25] Bosch M K, Nerbonne J M, Ornitz D M. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo. PLoS ONE, 2014, 9(8):e104062.
[26] Saleh L, Perler F B. Protein splicing in cis and in trans. The Chemical Record, 2006, 6(4):183-193.
[27] Eryilmaz E, Shah N H, Muir T W, et al. Structural and dynamical features of inteins and implications on protein splicing. Journal of Biological Chemistry, 2014, 289(21):14506-14511.
[28] Renaud-Gabardos E, Hantelys F, Morfoisse F, et al. Internal ribosome entry site-based vectors for combined gene therapy. World Journal of Experimental Medicine, 2015, 5(1):11-20.
[29] Alleramoreau C, Dellucclavières A, Castano C, et al. Long term expression of bicistronic vector driven by the FGF-1 IRES in mouse muscle. BMC Biotechnology, 2007, 7(1):1-12.
[30] Chu C, Lugovtsev V, Golding H, et al. Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(35):14802-14807.
[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[3] 左志宇, 辛灵彪, 杨洁, 王鑫廷. SND1转基因小鼠的构建[J]. 中国生物工程杂志, 2016, 36(4): 97-103.
[4] 宗鑫, 胡汪洋, 汪以真. 猪髓样分化因子MyD88特异性shRNA干扰载体的构建筛选及干扰效果评价[J]. 中国生物工程杂志, 2015, 35(7): 1-7.
[5] 梁振鑫, 尹富强, 刘庆友, 李力. 转基因动物乳腺生物反应器相关技术及研究进展[J]. 中国生物工程杂志, 2015, 35(2): 92-98.
[6] 汪运洋, 王春梅, 陈琛, 施定基. 模式生物小立碗藓遗传转化系统的研究进展[J]. 中国生物工程杂志, 2012, 32(01): 103-108.
[7] 李瑞芳, 熊前程, 张宗武, 黄亮, 王彬. 抗真菌肽CGA-N46基因多顺反子表达载体的构建与鉴定[J]. 中国生物工程杂志, 2011, 31(12): 93-98.
[8] 姜丽, 叶湘漓, 李大力. 利用Red重组系统快速构建基因打靶载体[J]. 中国生物工程杂志, 2011, 31(10): 88-94.
[9] 陈瑶, 缪竞诚, 韩亚丽, 盛伟华, 包婉蓉, 田丽娜, 张凤娟, 吕海涛, 杨吉成. IRES/polyA-promoter介导的Ang-1与VEGF165双基因表达效率的对比分析[J]. 中国生物工程杂志, 2010, 30(12): 10-19.
[10] 叶春江,张颖,刘发珍,李强. DNA分子量标准制备技术:方法与进展[J]. 中国生物工程杂志, 2009, 29(08): 119-123.
[11] 杨琳,罗建民,刘小军,成志勇,温树鹏,杜行严,杨晓阳,武学文. SHIP基因真核表达载体的构建、鉴定及其表达抑制白血病细胞增殖的实验研究[J]. 中国生物工程杂志, 2009, 29(06): 14-19.
[12] 诸葛福媛,吕智美,郑宏庭,章涛,邓华聪. FLT-1启动子在血管内皮细胞中特异生物活性的检测及其意义[J]. 中国生物工程杂志, 2009, 29(01): 7-11.
[13] 郑海学,郭慧琛,靳野,刘湘涛,谢庆阁. 基于FMDV IRES的双顺反子载体的构建及体外表达分析[J]. 中国生物工程杂志, 2007, 27(8): 29-33.
[14] 杨瑞锋, 刘金龙, 安志兴, 李志艳, 张涌. 牛β-酪蛋白基因的克隆及乳腺特异性表达载体的构建[J]. 中国生物工程杂志, 2005, 25(S1): 260-263.
[15] 赵寿经, 李昌禹, 骆晓佩, 钱延春, 战文宗, 孙琳. 诱导人参发根的rolC基因植物表达载体构建及其在人参中的表达[J]. 中国生物工程杂志, 2004, 24(9): 58-62.