Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (7): 1-7    DOI: 10.13523/j.cb.20150701
研究报告     
猪髓样分化因子MyD88特异性shRNA干扰载体的构建筛选及干扰效果评价
宗鑫, 胡汪洋, 汪以真
浙江大学饲料科学研究所 农业部动物营养与饲料重点开放实验室 浙江省饲料及动物营养重点实验室 杭州 310029
Construction and Evaluation of Porcine Myeloid Differentiation Factor 88(MyD88) shRNA Interference Vector
ZONG Xin, HU Wang-yang, WANG Yi-zhen
Institute of Food Science, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou 310029, China
 全文: PDF(1356 KB)   HTML
摘要:

髓样分化因子MyD88(myeloid differentiation factor 88)信号通路是一个具有多种调节功能的传导通路,在免疫反应、炎症反应及肿瘤的发生和发展过程中均发挥重要作用。构建猪(Sus scrofa)MyD88基因的shRNA干扰载体,并在转录水平和蛋白质表达水平对其干扰效果进行验证,以筛选出干扰效果最优的干扰载体。根据猪 MyD88 基因(GenBank登录号:KC766424.1)全长cDNA序列,利用Invitrogen公司在线设计软件设计出4对shRNA干扰序列,退火成双链后,分别将其插入到pYr-1.1载体中,构建 MyD88 基因的shRNA真核表达载体pYr-1.1-pigMyD88-sh1、pYr-1.1-pigMyD88-sh2、pYr-1.1-pig MyD88-sh3、pYr-1.1-pigMyD88-sh4,并通过双酶切和测序对其进行鉴定。构建成功后转染猪肺泡巨噬细胞3D4/2,通过Real-time PCR及Western blot验证 MyD88 基因的表达水平,以及对LPS刺激后炎症因子TNF-α基因表达水平的影响。结果表明,所构建的猪 MyD88 基因的特异性shRNA表达载体均可显著降低猪MyD88 mRNA和蛋白质的表达水平(P<0.05),干扰效率分别达到36%、67%、60%、69%;相比于未干扰组,LPS刺激MyD88沉默之后的巨噬细胞,炎症因子TNF-α基因表达水平显著下降(P<0.05),表明所构建猪MyD88干扰载体干扰效果较好。

关键词: 髓样分化因子MyD88载体构建干扰效果    
Abstract:

The myeloid differentiation factor 88 (MyD88) signaling pathway with a variety of regulatory functions, plays a critical role in the occurrence and development of inflammation and tumor immune response. The purpose is to construct a shRNA interference vector of MyD88 gene for porcine, and verify the effect of interference at the level of transcription and protein expression, in order to choose a optimal interference vector. Four pairs of shRNA oligonucleotide sequences were designed and synthesized according to MyD88 gene sequence of pig in GenBank (Accession: KC766424.1) and then were annealed into double-strand and inserted into the plasmid of pYr-1.1 respectively to construct expression vectors, pYr-1.1-pigMyD88-sh1, pYr-1.1-pigMyD88-sh2, pYr-1.1-pigMyD88-sh3, pYr-1.1 -pigMyD88-sh4. After DNA sequencing, four shRNA expression vectors were transfected into pig alveolar macrophage cells. The interference effect of these vectors was confirmed by detecting the expression of MyD88 with Western blot, Real-time PCR and the TNF-α gene expression in MyD88-slienced macrophages after LPS stimulation. The results show that MyD88 shRNA vectors were successfully constructed, and the specific shRNA of porcine MyD88 gene could significantly depressed the expression of porcine MyD88 at the level of mRNA and protein (P<0.05), with interference effects respectively reaching 36%, 67%, 60%, 69%. In contrast to the control group, the gene expression of TNF-α was decreased significantly in MyD88-slienced macrophages after LPS stimulation. These results indicated that the interference effect of MyD88 shRNA vectors was great. These data will provide insight in the role of MyD88, and the basic information to explore the mechanism of immune response related diseases in pigs.

Key words: Porcine    Myeloid differentiation factor 88 (MyD88)    Construction of expression vector    Interference effect
收稿日期: 2015-03-23 出版日期: 2015-07-25
ZTFLH:  Q782  
基金资助:

国家自然科学基金面上资助项目(31172213)

通讯作者: 汪以真     E-mail: yzwang321@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

宗鑫, 胡汪洋, 汪以真. 猪髓样分化因子MyD88特异性shRNA干扰载体的构建筛选及干扰效果评价[J]. 中国生物工程杂志, 2015, 35(7): 1-7.

ZONG Xin, HU Wang-yang, WANG Yi-zhen. Construction and Evaluation of Porcine Myeloid Differentiation Factor 88(MyD88) shRNA Interference Vector. China Biotechnology, 2015, 35(7): 1-7.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150701        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I7/1


[1] 方丽娟, 孟民杰. 髓样分化因子88研究进展. 广东药学院学报,2011,27(2):215-217. Fang L J, Meng M J. Progress in the study of myeloid differentiation factor 88. Journal of Guangdong Pharmaceutical College, 2011, 27(2): 215-217.

[2] Sheedy F J, O'Neill L A J. The troll in toll: Mal and TRAM as bridges for TLR2 and TLR4 signaling. J Leukocyte Biol, 2007, 82(1): 196-203.

[3] Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol, 2004,4(2):499-511.

[4] 吴燕燕, 王易. Toll样受体信号通路中MyD88的研究进展. 免疫学杂志.,2012,28(3):262-265. Wu Y Y, Wang Y. The progress in the MyD88-dependent receptor signaling pathway. Immunological Journal, 2012, 28(3): 262-265.

[5] Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science, 2010, 327(3): 291-295.

[6] Casanova J L, Abel L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annual Review of Immunology, 2011, 29(3):447-491.

[7] Li X X, Qin J Z. Modulation of Toll-interleukin 1 receptor mediated signaling. J Mol Med, 2005, 83(3):258-266.

[8] Taniguchi Y, Yoshioka N. Mechanism for maintaining homeostasis in the immune system of the intestine. Anticancer Research, 2009, 29(4):4855-4860.

[9] Zhu J, Mohan C. Toll-like receptor signaling pathways-therapeutic opportunities. Mediators of Inflammation, 2010, 78(12):35-37.

[10] 梁小明, 陈昌辉. 髓样分化因子88在Toll样受体信号通路中的作用及临床意义. 实用儿科临床杂志,2012,27(15):1197-1200. Liang X M, Chen C H. Role and clinical significance of myeloid differentiation factor 88 in Toll-like receptor mediated signaling transduction. Journal of Applied Clinical Pediatrics, 2012, 27(15):1197-1200.

[11] Tabeta K, Georgel P, Janssen E, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. PNAS, 2004, 101(5):3516-3521.

[12] An H, Qian C, Cao X. Regulation of Toll-like receptor signaling in the innate immunity. Science China-Life Sciences, 2010,53(6):34-43.

[13] Jin B, Sun T, Yu X H, et al. The effects of TLR activation on T-cell development and differentiation. Clinical & Developmental Immunology, 2012,48(3):778-786.

[14] Kawai T, Akira S. TLR signaling. Semin Immunol, 2007, 19(2):24-32.

[1] 贾小梅,倪莉,罗洪艳,丁红雷,王豪举. 猪多杀性巴氏杆菌检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 49-54.
[2] 张玲梅,王豪举. 猪链球菌检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 84-91.
[3] 王彦伟,李鹏昊,梁严予,关洋,逄文强,田克恭. 猪圆环病毒2型病毒样颗粒的高效组装技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 35-42.
[4] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[5] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[6] 石俊松,罗绿花,周荣,麦然标,纪红美,余婉娴,吴珍芳,蔡更元. 延迟激活对猪克隆胚胎体外、体内发育效率的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 16-23.
[7] 徐作波,李九彬,丁红雷. 猪肺炎支原体检测技术研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 78-83.
[8] 邓定浩,肖永乐,唐健雪,杨鑫,高荣. 真核表达猪白细胞介素17及其生物活性研究 *[J]. 中国生物工程杂志, 2018, 38(8): 10-18.
[9] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[10] 郭晓璐,龚秀芳,陈家锋,丁晨曦,胡丹,潘秀珍,王长军. 2型猪链球菌磷酸甘油酸激酶基因的克隆表达及酶活性测定 *[J]. 中国生物工程杂志, 2018, 38(3): 16-23.
[11] 刘静贤,何欣,韩慧明. 猪链球菌2型毒力因子研究新进展 *[J]. 中国生物工程杂志, 2018, 38(3): 97-104.
[12] 田聪慧, 谢雪梅, 李英, 尹晓东, 韩军, 李军. 基于IRES序列的多基因共表达载体构建[J]. 中国生物工程杂志, 2017, 37(7): 97-104.
[13] 左志宇, 辛灵彪, 杨洁, 王鑫廷. SND1转基因小鼠的构建[J]. 中国生物工程杂志, 2016, 36(4): 97-103.
[14] 王青, 徐彦召, 魏晓晓, 王秋霞, 杭柏林, 孙亚伟, 王飞飞, 胡建和. 猪繁殖与呼吸综合征病毒GP5a多克隆抗血清的制备[J]. 中国生物工程杂志, 2015, 35(8): 38-43.
[15] 李娟, 刘丽娜, 胡丹, 朱旭辉, 龚秀芳, 赵琳, 钟璟皓, 潘秀珍, 王长军. 2型猪链球菌MocR家族转录调控因子SSU0562基因敲除突变体的构建及毒力分析[J]. 中国生物工程杂志, 2015, 35(7): 8-14.