Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (4): 97-103    DOI: 10.13523/j.cb.20160414
技术与方法     
SND1转基因小鼠的构建
左志宇1, 辛灵彪1, 杨洁1,2, 王鑫廷1,2
1. 天津医科大学基础医学院免疫学系 天津 300070;
2. 天津医科大学基础医学院医学分子生物学系 天津 300070
Construction of SND1 Transgenic Mice
ZUO Zhi-yu1, XIN Ling-biao1, YANG Jie1,2, WANG Xin-ting1,2
1. Basic Medical College of Tianjin Medical University, Department of Immunization, Tianjin 300070, China;
2. Basic Medical College of Tianjin Medical University, Department of Biochemistry and Molecular Biology, Tianjin 300070, China
 全文: PDF(1564 KB)   HTML
摘要:

目的:构建 SND1 过表达的转基因小鼠模型。方法:利用对小鼠 SND1 基因转录本构建 SND1 过表达载体pInsulator-CAG-3×FLAG-SND1,利用受精卵原核注射技术,将外源线性pInsulator-CAG-3×FLAG-SND1转基因载体注射到受精卵细胞核内,将存活受精卵进行胚胎移植制备 SND1 转基因小鼠,用PCR、RT-PCR技术鉴定转基因小鼠是否构建成功。结果:成功构建过表达 SND1 基因的转基因小鼠模型,为进一步研究 SND1 基因在动物体内的生物学功能奠定基础。

关键词: 载体构建转基因小鼠SND1    
Abstract:

Objective: The aim is to establish an animal model of SND1 over-expression transgenic mice. Methods: The mice SND1 gene transcripts were used for form pInsulator-CAG-3×FLAG-SND1 recombinant vector. Then injected the recombinant vector into fertilized egg by microinjection technology to acquire the transgenic mice. These offspring were identified by PCR. Results: SND1 transgenic mice was constructed successfully and expressed effectively on account of target gene can be transferred by the transgenic mice which was proved by PCR and RT-PCR.These mice could provide an important model for studying the biological function of SND1 gene in vivo.

Key words: Transgenic mice    Vector construction    SND1
收稿日期: 2015-10-30 出版日期: 2016-01-04
ZTFLH:  Q789  
基金资助:

国家自然科学基金(31125012,31300709)资助项目

通讯作者: 王鑫廷     E-mail: fattymasker@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
左志宇
辛灵彪
杨洁
王鑫廷

引用本文:

左志宇, 辛灵彪, 杨洁, 王鑫廷. SND1转基因小鼠的构建[J]. 中国生物工程杂志, 2016, 36(4): 97-103.

ZUO Zhi-yu, XIN Ling-biao, YANG Jie, WANG Xin-ting. Construction of SND1 Transgenic Mice. China Biotechnology, 2016, 36(4): 97-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160414        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I4/97

[1] Tong X, Drapkin R, Yalamanchili R, et al.The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFllE Mol Cell Biol,1995,15(9):4735-4744.
[2] Broadhurst M K, Lee R S, Hawkins S, et al. The p100 EBNA-2 coactivator: a highly conserved protein found in a range of exocrine and endocrine cells and tissues in cattle. Biochim Biophys Acta, 2005, 1681(2-3): 126-133.
[3] Broadhurst M K, Wheeler T T. The p100 coactivator is present in the nuclei of mammary epithelial cells and its abundance is increased in response to prolactin in culture and in mammary tissue during lactation. J Endocrinol,2001, 171(2): 329-337.
[4] Palacios L, Ochoa B, Gomez-Lechon M J, et al. Overexpression of SND p102, a rat homologue of p100 coactivator, promotes the secretion of lipoprotein phospholipids in primary hepatocytes. Biochim Biophys Acta, 2006, 1761(7):698-708.
[5] Abe S, Sakai M, Yagi K, et al. A Tudor protein with multiple SNc domains from pea seedlings: cellular localization, partial characterization, sequence analysis, and phylogenetic relationships. J Exp Bot, 2003, 54(384): 971-983.
[6] Callebaut I, Mornon J P. The human EBNA-2 coactivator p100:multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development.Biochem J, 1997, 321 (Pt 1):125-132.
[7] Stone S J, Levin M C, Zhou P, et al. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem,2009, 284(8): 5352-5361.
[8] Gao X, Ge L, Shao J, et al. Tudor-SN interacts with and co-localizes with G3BP in stress granules under stress conditions. FEBS Lett, 2010, 584(16):3525-3532.
[9] Dash A B, Orrico F C, Ness S A. The EVES motif mediates both intermolecular and intramolecular regulation of c-Myb. Genes Dev, 1996,10(15): 1858-1869.
[10] Yang J, Aittomaki S, Pesu M, et al. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J, 2002, 21(18):4950-4958.
[11] Tsuchiya N,Ochiai M,Nakashima K,et al. SND1,a component of RNA-induced silencing complex,is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res, 2007,67(19):9568-9576.
[12] Chiosea S,Jelezcova E, Chandran U, et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res, 2007, 67(5):2345-2350.
[13] Brito G C,Fachel A A, Vettore A L,et al. Identification of protein-coding and intronic noncoding RNAs down-regulated in clear cell renal carcinoma.Mol Carcinog,2008,47(10):757-767.
[14] Kuruma H,Kamata Y, Takahashi H, et al. Staphylococcal nuclease domain containing protein 1 as a potential tissue marker for prostate cancer.Am J Pathol,2009,174(6):2044-2050.
[15] Ho J,Kong J W, Choong L Y,et al. Novel breast cancer metastasis-associated proteins. J Proteome Res, 2009,8(2):583-594.
[16] Blanco M A, Aleckovic M, Hua Y,et al. Identification of Staphylococcal nuclease domain-containing 1 (SND1) as a metadherin-interacting protein with metastasis promoting functions. J Biol Chem, 2011,286(22):19982-19992.
[17] Lin Y, Xin L, Kang C, et al. SND1 acts downstream of TGFβ1 and upstream of Smurf1 to promote breast cancer metastasis. Cancer Res,2015, 75(7):1275-1286.
[18] Duan Z, Zhao X, Fu X, et al. Tudor-SN, a novel coactivator of peroxisome proliferator-activated receptor gamma protein, is essential for adipogenesis. J Biol Chem, 2014, 289(12): 8364-8374.

[1] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[2] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[3] 韩明明,罗玉萍. 内源CD133 +细胞示踪小鼠模型的制备和鉴定 *[J]. 中国生物工程杂志, 2018, 38(6): 58-62.
[4] 田聪慧, 谢雪梅, 李英, 尹晓东, 韩军, 李军. 基于IRES序列的多基因共表达载体构建[J]. 中国生物工程杂志, 2017, 37(7): 97-104.
[5] 葛林, 刘新宇, WANG Guirong. 人SP-B蛋白转基因小鼠及细菌性肺炎模型的构建[J]. 中国生物工程杂志, 2017, 37(10): 65-71.
[6] 宗鑫, 胡汪洋, 汪以真. 猪髓样分化因子MyD88特异性shRNA干扰载体的构建筛选及干扰效果评价[J]. 中国生物工程杂志, 2015, 35(7): 1-7.
[7] 梁振鑫, 尹富强, 刘庆友, 李力. 转基因动物乳腺生物反应器相关技术及研究进展[J]. 中国生物工程杂志, 2015, 35(2): 92-98.
[8] 易学瑞, 袁有成, 龚亮, 张欣蕊, 李娜, 孔祥平. 8种天然药物与硼替佐米对HBsAg抑制作用及蛋白质组学分析[J]. 中国生物工程杂志, 2015, 35(11): 29-35.
[9] 汤俊明, 赵彦平, 刘奇, 盛青松, 吴黎明, 乔国洪. 构建皮肤组织中特异表达HPV16-E6基因的小鼠模型[J]. 中国生物工程杂志, 2015, 35(10): 27-31.
[10] 秦瑶, 赵鸿彦, 张文航, 王冬梅. 线粒体转录因子A敲低转基因小鼠的研制[J]. 中国生物工程杂志, 2014, 34(7): 44-48.
[11] 蒋世忠, 闫亚彬, 谢飞, 龚秀丽, 黄英, 吕宝忠. 转基因小鼠乳腺上皮细胞的体外培养及其对催乳素反应的研究[J]. 中国生物工程杂志, 2012, 32(03): 20-24.
[12] 汪运洋, 王春梅, 陈琛, 施定基. 模式生物小立碗藓遗传转化系统的研究进展[J]. 中国生物工程杂志, 2012, 32(01): 103-108.
[13] 马纪, 孙奋勇, 张越, 洪岸. miR-122过表达转基因小鼠质粒构建及其功能验证[J]. 中国生物工程杂志, 2011, 31(9): 28-34.
[14] 李瑞芳, 熊前程, 张宗武, 黄亮, 王彬. 抗真菌肽CGA-N46基因多顺反子表达载体的构建与鉴定[J]. 中国生物工程杂志, 2011, 31(12): 93-98.
[15] 张景锋, 郭欣政, 卫恒习, 李莉, 张守全. Tet system的调控原理及其在转基因小鼠模型上的应用[J]. 中国生物工程杂志, 2011, 31(11): 90-94.