Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (1): 38-45    DOI: 10.13523/j.cb.20170106
研究报告     
Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达
张震阳1,2,3, 杨艳坤1,2,3, 战春君1,2,3, 李翔1,2,3, 刘秀霞1,2,3, 白仲虎1,2,3
1. 江南大学 粮食发酵工艺与技术国家工程实验室 无锡 214122;
2. 江南大学 工业生物技术教育部重点实验室 无锡 214122;
3. 江南大学 糖化学与生物技术教育部重点实验室 无锡 214122
Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins
ZHANG Zhen-yang1,2,3, YANG Yan-kun1,2,3, ZHAN Chun-jun1,2,3, LI Xiang1,2,3, LIU Xiu-xia1,2,3, BAI Zhong-hu1,2,3
1. National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China;
2. The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
3. The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(957 KB)   HTML
摘要:

巴斯德毕赤酵母是甲醇酵母,作为应用最广泛的真核表达系统之一,在以甲醇为唯一碳源时可以利用醇氧化酶启动子PAOX1进行外源蛋白的表达,但是这一过程会被甘油阻遏。近几年有研究表明,甘油转运体不仅有运输甘油的功能,还与甘油、甲醇的代谢有一定的联系。目的:构建了甘油转运体GT2(PAS_chr3_1076)缺失菌株P. pastoris X-33 ΔGT2,研究该菌株的甘油去阻遏效应和在不同碳源培养基中诱导PAOX1启动子驱动外源蛋白的表达水平。方法:构建以甲醇诱导型启动子PAOX1调控外源基因EGFP的表达载体PAOX1-EGFP,经酶线性化后电转野生型菌株P. pastoris X-33获得重组菌株x-EGFP;通过同源重组的方法敲除GT2基因,获得ΔGT2-EGFP敲除菌株;以ΔGT2-EGFP和X-EGFP为出发菌株,在甘油、甲醇,以及甘油甲醇混合为碳源诱导醇氧化酶AOX1及绿色荧光蛋白EGFP的表达和生长情况,并检测在以甘油为唯一碳源时,胞外的甘油含量。结果:在以甘油甲醇混合碳源培养时,突变体ΔGT2-EGFP菌株中AOX1单位酶活比野生型菌株高出近35%,单位荧光强度要高出近70%;在以甘油为唯一碳源时,X-EGFP最终收获时的生物量比ΔGT2-EGFP多,且发酵液中甘油含量相对较少;以混合碳源培养时ΔGT2总外源蛋白表达水平最高。结论:实验表明,GT2参与甘油的吸收与代谢,ΔGT2突变株可在一定程度上解除甘油对甲醇的代谢抑制,暗示甘油转运体与PAOX1相关,且基于此研究结果有望优化出更高效的酵母表达系统。

关键词: 巴斯德毕赤酵母基因敲除GT2甘油转运体甘油阻遏    
Abstract:

Pichia pastoris is one of the most widely used eukaryotic expression systems. P. pastoris can express heterologous proteins with methanol as the sole carbon source. However, the expression can be repressed by glycerol. As reported recently, the glycerol transporter played a part not only in transporting glycerol,but also in the regulation between glycerol and methanol metabolism. Objective:A mutant P. pastoris X-33 ΔGT2 (PAS_chr3_1076) was constructed, and the glycerol de-repression effects was found. Methods:The X-EGFP and ΔGT2-EGFP cells were constructed respectively based X-33 wild-type strain(WT)and ΔGT2 cells, in which the EGFP was driven by PAOX1. The biomass and expression levels of AOX1 and EGFP were tested in different carbon resources (glycerol, methanol, glycerol plus methanol) mediums. The extracellular glycerol contents were tested. Results:The results showed that, for each OD strain, the enzyme activity of AOX1 of ΔGT2-EGFP was 35% higher than that of X-EGFP, and the fluorescence of ΔGT2-EGFP was 70% higher than that of x-EGFP. The x-EGFP harvested more biomass than ΔGT2-EGFP when glycerol as the sole carbon source resulting in less glycerol contents in the culture supernatant. Conclusion:GT2 involved in uptaking and metabolism of the glycerol, and the absence of GT2 could release the repression of glycerol on AOX1, which indicated that the glycerol transporter could be related to the transcription of PAOX1. The more efficient expression system of yeast is expected to be constructed based on these results.

Key words: Pichia pastoris    Glycerol transporter    GT2    Glycerol repression    Gene knockout
收稿日期: 2016-10-11 出版日期: 2017-01-25
ZTFLH:  Q815  
基金资助:

国家自然科学基金(31570034),江苏省自然科学基金(BK20150148),中央高校基本科研业务费专项(JUSRP51401A)资助项目

通讯作者: 杨艳坤, 白仲虎     E-mail: yangyankun@jiangnan.edu.cn;baizhonghu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.

ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins. China Biotechnology, 2017, 37(1): 38-45.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170106        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I1/38

[1] Gellissen G, Kunze G, Gaillardin C, et al. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica-a comparison. FEMS Yeast Res, 2005, 5(11):1079-1096.
[2] Cereghino J L, Cregg J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 2000, 24(1):45-66.
[3] Damasceno L M, Huang C J, Batt C A. Protein secretion in Pichia pastoris and advances in protein production. Applied Microbiology and Biotechnology, 2012, 93(1):31-39.
[4] Cos O, Ramón R, Montesinos J L, et al. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters:a review. Microbial Cell Factories, 2006, 5(1):1-20.
[5] 覃晓琳, 刘朝奇, 郑兰英. 信号肽对酵母外源蛋白质分泌效率的影响. 生物技术, 2010, 20(3):95-97. Tan X L,Liu Z Q,Zheng L Y. Efficiency of signal peptide sequence in yeast secretory expression system. Biotechnology, 2010, 20(3):95-97.
[6] Weinacker D, Rabert C, Zepeda A B, et al. Applications of recombinant Pichia pastoris in the healthcare industry. Brazilian Journal of Microbiology, 2013, 44(4):1043-1048.
[7] FitzGerald K, Holliger P, Winter G. Improved tumour targeting by disulphide stabilized diabodies expressed in Pichia pastoris. Protein Engineering, 1997, 10(10):1221-1225.
[8] Tibbot B K, Henson C A, Skadsen R W. Expression of enzymatically active, recombinant barley α-glucosidase in yeast and immunological detection of α-glucosidase from seed tissue. Plant Molecular Biology, 1998, 38(3):379-391.
[9] Çelik E, Çalik P. Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012, 30(5):1108-1118.
[10] Ahmad M, Hirz M, Pichler H, et al. Protein expression in Pichia pastoris:recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 2014, 98(12):5301-5317.
[11] Chiruvolu V, Eskridge K, Cregg J, et al. Effects of glycerol concentration and pH on growth of recombinant Pichia pastoris yeast. Applied Biochemistry and Biotechnology, 1998, 75(2-3):163-173.
[12] Gancedo J M. Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews, 1998, 62(2):334-361.
[13] Poutou-Pinales R A, Cordoba-Ruiz H A, Barrera-Avellaneda L A, et al. Carbon source feeding strategies for recombinant protein expression in Pichia pastoris and Pichia methanolica. African Journal of Biotechnology, 2010, 9(15):2173-2184.
[14] Chauhan A, Arora D, Khanna N. A novel feeding strategy for enhanced protein production by fed-batch fermentation in recombinant Pichia pastoris. Process Biochemistry, 1999, 34(2):139-145.
[15] Zhang W, Smith L A, Plantz B A, et al. Design of methanol feed control in Pichia pastoris fermentations based upon a growth model. Biotechnology Progress, 2002, 18(6):1392-1399.
[16] Sola A, Jouhten P, Maaheimo H, et al. Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology, 2007, 153(1):281-290.
[17] Jungo C, Marison I, von Stockar U. Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures. Journal of Biotechnology, 2007, 130(3):236-246.
[18] Jungo C, Marison I, von Stockar U. Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures:A quantitative study based on concentration gradients in transient continuous cultures. Journal of Biotechnology, 2007, 128(4):824-837.
[19] 姚学勤. 甘油去阻遏表型巴斯德毕赤酵母(Pichia pastoris)的构建及其初步研究. 北京:中国人民解放军军事医学科学院, 2009. Yao X Q. Construction of a Pichia pastoris Strain Deficient in Glycerol Catabolite Repression and,in the Presence of Glycerol,Expressing Heterologous Proteins Under Induction by Methanol. Beijing:Academy of Military Medical Sciences, 2009.
[20] Eggeling L, Sahm H. Derepression and partial insensitivity to carbon catabolite repression of the methanol dissimilating enzymes in Hansenula polymorpha. European Journal of Applied Microbiology and Biotechnology, 1978, 5(3):197-202.
[21] Zhan C, Wang S, Sun Y, et al. The Pichia pastoris transmembrane protein GT1 is a glycerol transporter and relieves the repression of glycerol on AOX1 expression. FEMS Yeast Res, 2016, 16(4):fow033.
[22] Kranthi B V, Kumar V, Rajendra H, et al. Identification of Mxr1p-binding sites in the promoters of genes encoding dihydroxyacetone synthase and peroxin 8 of the methylotrophic yeast Pichia pastoris. Yeast, 2010, 27(9):705-711.

[1] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[2] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[3] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[4] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[5] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[6] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[7] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[8] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[9] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[10] 苏春晓,张晓玉,曾晗,陈压西,阮雄中,杨萍. 肝脏特异性CD36基因敲除小鼠的制备及鉴定 *[J]. 中国生物工程杂志, 2018, 38(8): 26-33.
[11] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.
[12] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[13] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.
[14] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[15] 冯雪, 高香, 牛纯青, 刘堰. 密码子优化后的αB-晶状体蛋白基因毕赤酵母重组质粒的构建及表达的初步研究[J]. 中国生物工程杂志, 2017, 37(7): 42-47.