Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (8): 10-18    DOI: 10.13523/j.cb.2002002
研究报告     
MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *
彭海丽,侯占铭()
内蒙古师范大学生命科学与技术学院 呼和浩特 010020
MGV1 Dependent Transcripts(MDT1)Gene in Fusarium Graminearum is Involved in Conidiation and Vegetative Growth
PENG Hai-li,HOU Zhan-ming()
College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
 全文: PDF(1751 KB)   HTML
摘要:

背景:禾谷镰刀菌(Fusarium graminearum)是小麦及其它粮食作物小麦赤霉病(Fusarium head blight)的主要病原菌。目前,分子分析在研究病原菌的致病机理中已有广泛应用。MGV1菌株是禾谷镰刀菌MAPK信号通路基因MGV1缺失后的突变体,MGV1敲除突变体的差异基因表达(DGE)分析显示,MGV1基因缺失后,MDT1基因表达量显著下调。GO注释预测是参与ATP结合蛋白二聚作用的活性因子。推测该基因涉及MGV1通路。目的: 探讨MDT1基因(MGV1 dependent transcripts)的生物学功能。方法: 应用Split-Marker技术构建基因敲除盒,并通过常规方法检测缺失突变体的表型和致病性。结果: 与禾谷镰刀菌PH-1相比,MDT1基因缺失突变体的分生孢子量和子囊壳量显著下降,表明该基因对于无性繁殖和有性生殖能力至关重要。同时发现,在固体培养基上,缺失突变体的营养生长能力大大下降。该缺失突变体对细胞壁降解酶也很敏感,液体培养基中32℃下,菌丝顶端膨大,并有菌丝断裂,表明该基因与禾谷镰刀菌的细胞壁整合有关。互补实验证实了敲除突变体表型改变确实是由于MDT1基因缺失所致。结论: MDT1基因与禾谷镰刀菌的分生孢子和营养生长能力有关。

关键词: 禾谷镰刀菌MDT1Split-marker基因敲除致病力    
Abstract:

Background: Fusarium graminearum is the major pathogen of Fusarium head blight of wheat and other grain crops. To understand mechnism of pathogenesis of the pathogen, molecular analysis has widely carried out during the past dacades. The differential gene expression (DGE) analysis for MGV1 deletion mutant revealed that the MDT1 gene was significantly down-regulated in MGV1 knock-out mutant, suggesting that the gene was involved in the MGV1 pathway. Go annotation given out that the MDT1 gene was involved in the ATP binding and protein dimerization activity. Objective: In order to identify the function of gene, MDT1(MGV1 dependent transcripts)Gene was isolated and characterized. Methods: The split-marker strategy was applied to construct the deletion cassette of the gene and the phenotype and pathogenicity of the deletion mutant were assayed by conventional method. Results: MDT1 gene deletion mutant significantly decreased the amount of conidia and produced less perithecia than that of the wild type, indicating that the gene was essential for the asexual and sexual reproduction. Vegetative growth of the mutant greatly reduced in solid medium. The mutant also was hypersensitive to cell wall degrading enzyme and formed swollen top of the mycelium and fractured hyphea at 32℃in liquid medium, revealing that the gene was related to the cell wall integration in Fusarium graminearum. The complement test confirmed the phenotypic changes of the MDT1 gene deletion. Conclusion: The results demonstrated that MDT1 gene in Fusarium graminearum was involved in conidiation and vegetative growth.

Key words: Fusarium graminearum    MDT1    Split-marker    Gene deletion    Condiation
收稿日期: 2020-02-06 出版日期: 2020-09-10
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31160280);内蒙古自治区自然科学基金(2015MS0311)
通讯作者: 侯占铭     E-mail: houzhm@imnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
彭海丽
侯占铭

引用本文:

彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.

PENG Hai-li,HOU Zhan-ming. MGV1 Dependent Transcripts(MDT1)Gene in Fusarium Graminearum is Involved in Conidiation and Vegetative Growth. China Biotechnology, 2020, 40(8): 10-18.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2002002        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I8/10

Strains, plasmids and primers Characterization and sequence Resource
Strains
Fusarium graminearum wilde type Purdue University
Plasmids
pCB1003 Containing Hygromycin Purdue University
FGSG_07836 1F CTGTCTACACCATCACGACAGATC
FGSG_07836 2R TTGACCTCCACTAGCTCCAGCCAAGCCGCGAGATTCAGGAACTGAAGACGT
FGSG_07836 3F ATAGAGTAGATGCCGACCGCGGGTTCACGCTCATCTGATATGGTGACACC
FGSG_07836 4R GATGGACTTTGTTGTGAGAGGCTA
FGSG_07836 N1F CACTGTCACTGTCATTGACG
FGSG_07836 N2R CTCGATAGTCGAATGTGAGC
HYG/F GGCTTGGCTGGAGCTAGTGGAGGTCAA
HY/R TTCGGACCGCAAGGAATCGGTCAATAC
YG/F GATGTAGGAGGGCGTGGATATGTCCT
HYG/R ATAGAGTAGATGCCGACCGCGGGTTC
FGSG_07836 com1F CGCGGATCCGATTAGGATGGATATGCAGAGC
FGSG_07836 com2R CGCGGATCCGCAGTAAGAGCACCAGCATATG
NeoF GAGAGGCTATTCGGCTATGACT
NeoR GGCCACAGTCGATGAATCCAGA
表1  本实验所用的引物序列
图1  pZPH1载体构建的原理示意图
图2  △FGSG_07836的构建、筛选
图3  pZPH1质粒的构建及筛选
图4  FGSG_07836 C PCR筛选
图5  不同菌株菌落形态及分生孢子形态
菌株 分生孢子量(×105) 菌落直径(cm) 侵染直径(cm)
Strain Conidia number Colony diameter Infect diameter
TCC V8 juice
PH-1 12.00±0.58Aa 7.48±0.06Aa 7.48±0.03Aa 3.90±0.31a
FGSG_07836 6.00±0.29Bb 4.45±0.03Bb 4.48±0.06Bb 3.33±0.17a
FGSG_07836C 11.00±0.58Aa 7.50±0.06Aa 7.37±0.09Aa 3.73±0.37a
表2  不同菌株的分生孢子量、菌落直径及侵染番茄直径的统计分析
图6  不同菌株的原生质体、菌丝及有性杂交比较
图7  不同菌株侵染实验
[1] 俞大紱. 中国镰刀菌属(Fusarium)菌种的初步名录. 植物病理学报, 1955, (1).
Yu D F. A preliminary list of Fusarium species in China. Chinese Journal of Plant Pathology, 1955, (1).
[2] Hou Z, Xue C, Peng Y, et al. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Molecular Plant-Microbe Interactions, 2002,15(11):1119.
doi: 10.1094/MPMI.2002.15.11.1119 pmid: 12423017
[3] Placinta C M, D’Mello J P F, Macdonald A M C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal Feed Science & Technology, 1999,78(1-2):21-37.
[4] Chen Y, Wang J, Ma Z H, et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications, 2018,9:3429.
doi: 10.1038/s41467-018-05683-7 pmid: 30143616
[5] Liu Z Y, Jian Y Q, Ma Z H, et al. A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearum. Nature Communications, 2019,10:1228.
doi: 10.1038/s41467-019-09145-6 pmid: 30874562
[6] Liu N, Yun Y Z, Yin Y N, et al. Lipid droplet biogenesis regulated by the FgNem1/Spo7-FgPah1 phosphatase cascade plays critical roles in fungal development and virulence in Fusarium Graminearum. New Phytologist, 2019, (1):412-429.
doi: 10.1111/nph.14323 pmid: 27879004
[7] Hong S Y, Jinny S, Jungkwan L. Functional analyses of two syntaxin-like SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genetics & Biology, 2010,47(4):364-372.
doi: 10.1016/j.fgb.2010.01.005 pmid: 20102747
[8] Jonkers W, Dong Y, Broz K, et al. The wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathogens, 2012,8(5):e1002724.
doi: 10.1371/journal.ppat.1002724 pmid: 22693448
[9] Jiang J, Yun Y, Yang Q, et al. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum. PLoS One, 2011,6(9):e25311.
doi: 10.1371/journal.pone.0025311 pmid: 21980420
[10] Kim Y, Kim H, Son H, et al. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum. PLoS One, 2014,9(4):e94359.
doi: 10.1371/journal.pone.0094359 pmid: 24722578
[11] Son H, Fu M, Lee Y. A novel transcription factor gene FHS1 is involved in the DNA damage response in Fusarium graminearum. Scientific Reports, 2016,6:21572.
doi: 10.1038/srep21572 pmid: 26888604
[12] Cao S, Zhang S, Hao C, et al. FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum. Scientific Reports, 2016,6:22333.
doi: 10.1038/srep22333 pmid: 26931632
[13] Son H, Kim M G, Min K. WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus Fusarium graminearum. Eukaryotic Cell, 2014,13(1):87-98.
doi: 10.1128/EC.00220-13
[14] 吴彬. 小麦赤霉菌FgAC1基因敲除及功能研究. 呼和浩特: 内蒙古师范大学, 2011.
Wu B. Study on knockout and function of FgAC1 gene of Fusarium graminearum. Hohhot: Inner Mongolia Normal University, 2011.
[15] 彭海丽, 侯占铭. 小麦赤霉菌FGSG_04871基因敲除及功能研究. 内蒙古师范大学学报(自然科学汉文版), 2017,46(3):394-400.
Peng H L, Hou Z M. Study on knockout and function of FGSG_04871 gene of Fusarium graminearum. Journal of Inner Mongolia Normal University (Natural Science Edition), 2017,46(3):394-400.
[16] Catlett N L, Lee B N, Yoder O C, et al. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Newsletter, 2003,50(50):9-11.
[17] 常玉梅, 侯占铭. 禾谷镰刀菌中FgPDE1基因的敲除及其功能的研究. 中国生物工程杂志, 2015,35(8):59-67.
doi: 10.13523/j.cb.20150809
Chang Y M, Hou Z M. Research on gene knockout and function of FgPDE1 in Fusarium graminearum. China Biotechnology, 2015,35(8):59-67.
doi: 10.13523/j.cb.20150809
[18] Zheng L, Campbell M, Murphy J, et al. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions, 2000,13(7):724.
doi: 10.1094/MPMI.2000.13.7.724 pmid: 10875333
[19] Bowden R L, Leslie J F. Nitrate-nonutilizing mutants of Gibberella zeae (Fusarium graminearum) and their use in determining vegetative compatibility. Experimental Mycology, 1992,16(4):308-315.
doi: 10.1016/0147-5975(92)90007-E
[1] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[2] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[3] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[4] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[5] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[6] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[7] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[8] 苏春晓,张晓玉,曾晗,陈压西,阮雄中,杨萍. 肝脏特异性CD36基因敲除小鼠的制备及鉴定 *[J]. 中国生物工程杂志, 2018, 38(8): 26-33.
[9] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.
[10] 刘宇帅,张杰,钟瑾,李晶,孟利强,张淑梅. 解淀粉芽孢杆菌TF28抗菌脂肽芬芥素的分离鉴定及抑菌作用 *[J]. 中国生物工程杂志, 2018, 38(10): 20-29.
[11] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[12] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[13] 张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.
[14] 杜红燕, 李天明, 刘金雷, 冯惠勇. 构建尿嘧啶磷酸核糖转移酶基因缺失菌株实现Gluconobacter suboxydans基因组无痕修饰[J]. 中国生物工程杂志, 2016, 36(7): 64-71.
[15] 韩海红, 汪俊卿, 王腾飞, 肖静, 韩登兰, 王瑞明. 一种基于单交换原理的地衣芽孢杆菌基因敲除方法及应用[J]. 中国生物工程杂志, 2016, 36(11): 63-69.