Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (10): 38-47    DOI: 10.13523/j.cb.20181005
技术与方法     
利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *
盛玉瑞1,李斌1,王斌1,2,左娣2,马琳2,任晓璠2,郭乐1,3,**(),刘昆梅2,**()
1 宁夏医科大学临床医学院 银川 750004
2 宁夏医科大学宁夏颅脑疾病重点实验室 银川 750004
3 宁夏临床微生物重点实验室 宁夏医科大学总医院 银川 750003
The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells
Yu-rui SHENG1,Bin LI1,Bin WANG1,2,Di ZUO2,Lin MA2,Xiao-fan REN2,Le GUO1,3,**(),Kun-mei LIU2,**()
1 Ningxia Medical University Clinical Medical College , Yinchuan 750004, China
2 Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
3 Ningxia Clinical Microbiology Key Laboratory, Yinchuan 750003, China
 全文: PDF(2429 KB)   HTML
摘要:

星形胶质细胞上调基因-1(astrocyte elevated gene-1,AEG-1)在多种肿瘤中过表达,参与肿瘤的形成、转移等过程。本实验利用CRISPR/Cas9技术敲除AEG-1基因并研究其在胶质瘤细胞转移过程中的作用。首先设计构建sgRNA/Cas9二合一表达载体并转染到人胶质瘤U251细胞中,通过TA克隆测序鉴定sgRNA的活性;然后筛选建立稳定的AEG-1敲除U251细胞系,并利用Western blot实验检测AEG-1的敲除效率;最后利用Transwell小室、划痕实验评价AEG-1敲除后对肿瘤细胞迁移能力的影响。结果显示,成功构建靶向敲除AEG-1基因的sgRNA/Cas9二合一表达载体,所构建的载体与实验设计相一致,通过TA克隆测序鉴定sgRNA有活性;成功建立稳定的AEG-1敲除U251细胞系,Western blot实验结果表明敲除效率高达98%;Transwell小室实验、划痕实验结果表明AEG-1敲除U251细胞系的转移能力明显降低。

关键词: 星形胶质细胞上调基因-1(AEG-1)CRISPR/Cas9基因敲除U251细胞    
Abstract:

Astrocyte elevated gene-1 (AEG-1) was overexpressed in a diverse array of cancers and played an important role in the development and progression of cancer. The study aimed to construct the AEG-1-knockout U251 cell line by CRISPR/Cas9 technology and to explore the effect of AEG-1 on the metastasis in U251 Cells. Firstly, the designed sgRNA targeted to AEG-1 was synthesized, and was cloned into the pX459 plasmid to obtain the AEG-1-pX459 recombinant vector. The recombinant vector was transfected into human glioma U251 cells, and the activity of sgRNA was identified by TA cloning sequencing. Then, the U251 cells transferred with the recombinant vector were screened by puromycin to get the AEG-1-knockout cell line. The efficiency of gene knockout was detected by Western blot assay. Finally, the migration ability of the AEG-1-knockout cell line was evaluated by the methods of Transwell and Scratch experiment. The results showed that the AEG-1-pX459 recombinant vector was successfully constructed, and the sgRNA activity was confirmed by TA cloning sequencing. The AEG-1-knockout U251 cell line was successfully established. Western blot assay analysis showed that the knockout efficiency high to 98%. The Transwell and Scratch experiment results illustrated that the migration ability of the AEG-1-knockout cell line reduced obviously.

Key words: Astrocyte elevated gene-1(AEG-1)    CRISPR/Cas9    Gene knockout    U251 cells
收稿日期: 2018-05-10 出版日期: 2018-11-09
ZTFLH:  Q813  
基金资助: * 国家自然科学基金(31660267);宁夏回族自治区2016年大学生创新(201610752012);教育部“春晖计划”合作科研(Z2016060);宁夏高等学校科学技术研究(NGY201591);宁夏回族自治区“十三五”重大科技(2016BZ07)
通讯作者: 郭乐,刘昆梅     E-mail: guoletian1982@163.com;lkm198507@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
盛玉瑞
李斌
王斌
左娣
马琳
任晓璠
郭乐
刘昆梅

引用本文:

盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.

Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells. China Biotechnology, 2018, 38(10): 38-47.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181005        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I10/38

图1  pX459质粒图及Bbs I酶切位点
名称
Name
序列
Sequence
AEG-1- sgRNA-1 5'-CACCGACTTCAACAGTCCGCCCATT-3'
3'-CTGAAGTTGTCAGGCGGGTAACAAA-5'
AEG-1- sgRNA-2 5'-CACCGCAAAACAGTTCACGCCATGA-3'
3'-CGTTTTGTCAAGTGCGGTACTCAAA-5'
AEG-1- sgRNA-3 5'- CACCGACAGCAGCGTAAACGTGATA-3'
3'- CTGTCGTCGCATTTGCATATCAAA-5'
表1  AEG-1 sgRNA核酸片段
名称
Name
序列
Sequence
PCR产物大小
The size of PCR product
Short-chain primer of AEG-1-1 5'-TCCTGCGTATAAATCTTTG-3'
3'-TTTACCACCCATCCACTA-5'
324
Short-chain primer of AEG-1-2 5'-TAAAGCAGTGCAAAACAG -3'
3'-TTCCAGGAGACAAAGACA-5'
325
Short-chain primer of AEG-1-3 5'-GGTGCTGACTGATTCTGG -3'
3'-CTGCTGGTATTCGGTAAA-5'
293
表2  用于TA克隆的短链PCR引物
图2  pX459-AEG-1鉴定结果
图3  TA克隆分析检测Indel突变
图4  AEG-1基因在AEG-1基因敲除细胞系中的表达水平
图5  Transwell小室实验检测AEG-1基因敲除细胞系的侵袭能力
图6  划痕实验检测AEG-1基因敲除细胞系的迁移能力
[1] Yoo B K, Emdad L, Lee S G , et al. Astrocyte elevated gene-1(AEG-1):a multifunctional regulator of normal and abnormal physiology. Pharmacology & Therapeutics, 2011,130(1):1-8.
doi: 10.1016/j.pharmthera.2011.01.008 pmid: 21256156
[2] Lee S G, Kang D C, Desalle R , et al. AEG-1/MTDH/LYRIC, the beginning: initial cloning, structure, expression profile, and regulation of expression. Adv Cancer Res, 2013,120:1-38.
doi: 10.1016/B978-0-12-401676-7.00001-2
[3] Ash S C, Yang D Q, Britt D E . LYRIC/AEG-1 overexpression modulates BCCIPalpha protein levels in prostate tumor cells. Biochemical & Biophysical Research Communications, 2008,371(2):333-338.
doi: 10.1016/j.bbrc.2008.04.084 pmid: 2573900
[4] Emdad L, Lee S G, Su Z Z , et al. Astrocyte elevated gene-1(AEG-1) functions as an oncogene and regulates angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(50):21300-21305.
doi: 10.1073/pnas.0910936106
[5] Kang D C, Su Z Z, Sarkar D , et al. Cloning and characterization of HIV-1-inducible astrocyte elevated gene-1, AEG-1. Gene, 2005,353(1):8-15.
doi: 10.1016/j.gene.2005.04.006 pmid: 15927426
[6] Yoo B K, Chen D, Su Z Z , et al. Molecular mechanism of chemoresistance by astrocyte elevated Gene-1. Cancer Research, 2010,70(8):3249-3258.
doi: 10.1158/0008-5472.CAN-09-4009 pmid: 2855753
[7] Emdad L, Sarkar D, Lee S G , et al. Astrocyte elevated gene-1:a novel target for human glioma. Molecular Cancer Therapeutics, 2010,9(1):79-88.
doi: 10.1158/1535-7163.MCT-09-0752 pmid: 20053777
[8] Sander J D, Joung J K . CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014,32(4):347-355.
doi: 10.1038/nbt.2842 pmid: 24584096
[9] Pelletier S, Gingras S, Green D R . Mouse genome engineering via CRISPR-Cas9 for study of immune function. Immunity, 2015,42(1):18-27.
doi: 10.1016/j.immuni.2015.01.004 pmid: 4720985
[10] Liu L, Wu J, Ying Z , et al. Astrocyte elevated gene-1 upregulates matrix metalloproteinase-9 and induces human glioma invasion. Cancer Research, 2010,70(9):3750-3759.
doi: 10.1158/0008-5472.CAN-09-3838
[11] Ota S, Kawahara A . Zebrafish: a model vertebrate suitable for the analysis of human genetic disorders. Congenit Anom, 2014,54(1):8-11.
doi: 10.1111/cga.12040 pmid: 24279334
[12] Xue W, Chen S D, Yin H , et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014,514(7522):380-384.
doi: 10.1038/nature13589 pmid: 25119044
[13] Su S, Hu B, Shao J , et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep, 2016,6:20070.
doi: 10.1038/srep20070 pmid: 4730182
[14] Ren J, Zhang X, Liu X , et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget, 2017,8(10):17002-17011.
doi: 10.18632/oncotarget.15218 pmid: 28199983
[15] Merhavi-Shoham E, Itzhaki O, Markel G , et al. Adoptive cell therapy for metastatic melanoma. Cancer J, 2017,23(1):48-53.
doi: 10.1097/PPO.0000000000000240 pmid: 28114254
[16] Shao H, Lin Y, Wang T , et al. Identification of peptide-specific TCR genes by in vitro peptide stimulation and CDR 3 length polymorphism analysis. Cancer Lett, 2015,363(1):83-91.
doi: 10.1016/j.canlet.2015.04.001 pmid: 25890221
[17] 邵红伟, 陈辉, 彭鑫 , 等. CRISPR-Cas9系统定向编辑TCR基因的sgRNA筛选. 集美大学学报(自然版), 2015,20(4):265-270.
doi: 10.3969/j.issn.1007-7405.2015.04.005
Shao H W, Chen H, Peng X , et al. SgRNA screening of directed edited TCR gene in CRISPR-Cas9 system. Journal of Jimei University (Natural Science), 2015,20(4):265-270.
doi: 10.3969/j.issn.1007-7405.2015.04.005
[18] Ren J, Liu X, Fang C , et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res, 2016,23(9):2255-2266.
[19] Steinhart Z, Pavlovic Z, Chandrashekhar M , et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med, 2017,23(1):60-68.
doi: 10.1038/nm.4219 pmid: 27869803
[20] Cheong T C, Compagno M, Chiarle R . Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat Commun, 2016,7:10934.
doi: 10.1038/ncomms10934 pmid: 26956543
[21] Cong L, Ran F A, Cox D , et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1231143
[22] Jinek M, Jiang F, Taylor D W , et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014,343(6176):1247997.
doi: 10.1126/science.1247997
[23] Liu L, Fan X D . CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol Biol, 2014,85(3):209-218.
doi: 10.1007/s11103-014-0188-7 pmid: 24639266
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[4] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[5] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[6] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[7] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[8] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[9] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[10] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[11] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[12] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[13] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[14] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[15] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.