Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 48-64    DOI: 10.13523/j.cb.1908059
研究报告     
Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *
郭晶,侯占铭()
内蒙古师范大学生物科学与技术学院 呼和浩特 010022
Folpcs1 Is Responsible for Asexual Reproduction and Vegetative Growth in Fusarium oxysporum f. sp. Lini.
GUO Jing,HOU Zhan-ming()
College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot 010022, China
 全文: PDF(4334 KB)   HTML
摘要:

背景 尖孢镰刀菌亚麻专化型[Fusarium oxysporum Schl.f.sp.Lini(Bolley) Snyder & Hansen]是一种引起亚麻枯萎病的土传真菌,对亚麻的产量及质量有严重的危害.研究表明,在小麦赤霉菌中C2H2型锌指转录因子Pcs1调控中间瓶梗(intercalary phialides)产生分生孢子.目的:鉴定pcs1同源基因Folpcs1在镰刀菌中的作用.方法:Folpcs1的基因组DNA及cDNA测序后,利用Split-Marker 基因敲除技术破坏该基因.构建含有潮霉素抗性基因(hph)的基因缺失盒.通过聚乙二醇(PEG)转化野生型原生质体法,获得了Folpcs1基因缺失突变株(ΔFolpcs1),并利用PCR法进行正负筛选.为了对缺失突变体互补,将pcs1及其上下游侧翼序列构建到pZWH1中后,回复到ΔFolpcs1中.结果: 测序结果表明,有一个654bp的内含子,cDNA序列长度为2 846bp.通过观察发现,敲除突变体的生长速率明显降低,培养基中几乎观察不到分生孢子.回复突变体回复了野生型菌株的生长速率及分生孢子产生过程.结论: 说明Folpcs1负责菌丝的营养生长和分生孢子的产生.

关键词: 尖孢镰刀菌亚麻专化型Folpcs1Split-Marker基因敲除    
Abstract:

Fusarium oxysporum f.sp.Lini, a forma specialis of Fusarium oxysporum on flax, is soil-borne fungus which causes Fusarium wilt of flax, a serious disease of flax resulting in great loss of yield and quality of the crop. It has been identified that C2H2 zinc finger transcription factor Pcs1 in Fusarium graminearum is responsible for the generation of conidia produced from intercalary phialides on hyphae. Objective:The gene disruption of the Folpcs1 is performed according the principle of homologous recombination for identifying the function of the Folpcs1, the homologous gene of the pcs1, in Fusarium oxysporum f. sp. Lini. Methods:The disruption of the gene was made by the Split-Marker strategy after the genomic and complementary DNA was sequenced. The deletion cassettes containing a hygromycin resistance gene (hph) was constructed and transformed into protoplast of the wild type of the fungus mediated by polyethylene glycol. The deletion mutants, ΔFolpcs1s, were obtained and confirmed by PCR using positive and negative primer. To make complementation for the deletion mutuant, the coding frame sequence of the Folpcs1 gene, together with its upstream and downstream flanking sequence, was cloned into the pZWH1 containing neomycin resistant gene and transformed into the deletion mutant. Results:The sequencing revealed that the gene contained one intron of 654bp and the whole cDNA sequence consisted of 2 846bp. The morphological and microscopic observation found that growth rate of deletion mutant significantly reduced and the conidium was hardly observed in culture mixture of the mutant. The revertant recovered in normal growth and conidiogenesis of the wild type. Conclusion:The results suggest that Folpcs1 is responsible for asexual reproduction and vegetative growth in Fusarium oxysporum f. sp. Lini.

Key words: Fusarium    oxysporum    Schl.f.sp.Lini    Folpcs1    Split-marker    Gene    disruption
收稿日期: 2019-08-29 出版日期: 2020-04-18
ZTFLH:  Q78  
基金资助: * 国家自然科学基金(31160280);内蒙古自治区自然科学基金(2015MS0311)资助项目
通讯作者: 侯占铭     E-mail: houzhm@imnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭晶
侯占铭

引用本文:

郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.

GUO Jing,HOU Zhan-ming. Folpcs1 Is Responsible for Asexual Reproduction and Vegetative Growth in Fusarium oxysporum f. sp. Lini.. China Biotechnology, 2020, 40(3): 48-64.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1908059        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/48

试剂 10μl体系
pMD19-T Vector 1μl
目的片段 0.1~0.4pmol
ddH2O up to 5μl
Solution I 5μl
表1  pMD19-T载体克隆体系
Primer name Primer sequence (5'-3') Resource
Folpcs1 G1F GACTATATCTACGTTGGCAGC 同源序列
Folpcs1 G2F GGCATTGCACCCATTTGGCC Homologous sequence
Folpcs1 G3F CGAGCATCTTGACGACTGTG
Folpcs1 G4R GTCAACTCCARGGCGC
Folpcs1 G5F CAGAAACATCTCAGACCC
Folpcs1 G6R GGTCCTCATCATGTGAGGTTG
Folpcs1 G7F GCCAAATGGGTGCAATGCC
Folpcs1 G8R GTCTGGTGAACATCCTTATC
Folpcs1 G9F(2) GGCTTCARTTGCTGGGCCC
Folpcs1 G10R GGGTCTGAGATGTTTCTG
Folpcs1 G11F(3) CAGATGACCATGAAGAAGCGTG
Folpcs1 G12R(3) CCAAACAAGATACCRCCTGCATC
Folpcs1 5'inner GTCAGATCCCATGTAGTCATTGC Folpcs1上游序列
Folpcs1 5'outer GTTCTGGTTGTCCATTGGTGCAC Folpcs1内部序列
Folpcs1 3'inner GCGGATTGTATTAGAACAAGG Folpcs1下游序列
Folpcs1 3'outer CAGATGACCATGAAGAAGCGTG Folpcs1内部序列
Folpcs1 KO1F GGCAATGCTCATGCACCGCAGTG Folpcs1上游序列
Folpcs1 KO2R TTGACCTCCACTAGCTCCAGCCAAGCCGTAA Upstream sequence of Fol
CCTGGGAACGCTTACCTG pcs1
Folpcs1 KO3F ATAGAGTAGATGCCGACCGCGGGTTCGCGG Folpcs1下游序列
ATTGTATTAGAACAAGG Downstream sequence of
Folpcs1 KO4R GGTCCTATCAAGCTTAGATAG Folpcs1
HYG/F GGCTTGGCTGGAGCTAGTGGAGGTCAA hph 上游序列
HY/R TTCGGACCGCAAGGAATCGGTCAATAC Upstream sequence of hph
YG/F GATGTAGGAGGGCGTGGATATGTCCT hph 下游序列
HYG/R ATAGAGTAGATGCCGACCGCGGGTTC Downstream sequence of hph
Folpcs1 N1F TGAGCTTGAGTCTACTCTAC Folpcs1 内部序列
Folpcs1 N2R GTCTGGTGAACATCCTTATC Internal sequence of Folpcs1
NeoF GAGAGGCTATTCGGCTATGACT 新霉素抗性基因
NeoR GGCCACAGTCGATGAATCCAGA 新霉素抗性基因
Folpcs1 CEⅡF GACCTGCAGGCATGCAAGCTTCAGGACAAGACAAGGCAAGGC Folpcs1上游序列pstream sequence of Folpcs1
Folpcs1 CEⅡR GACCATGATTACGCCAAGCTTGCCATTGTCGACATGGCTTG Folpcs1下游序列Downstream sequence of Folpcs1
表2  引物序列
试剂 20μl体系
线性化pZWH1载体 3μl
插入目的片段 2.2μl
5×CEⅡbuffer 4μl
ExnaseⅡ 2μl
ddH2O 8.8μl
表3  一步法无缝定向克隆体系
图1  尖孢镰刀菌亚麻专化型基因组DNA及RNA
图2  Folpcs1基因cDNA末端克隆
图3  Folpcs1 DNA及cDNA的获得
图4  四种真菌氨基酸序列比对
图5  根据10种真菌氨基酸序列构建的系统进化树
图6  Folpcs1 基因缺失盒的构建
图7  Folpcs1 转化子的筛选与鉴定
图8  不同菌株表型分析
Strain Conidia number (×107)
Hm 1.527±0.065 a
ec Folpcs1 1.528±0.086a
ΔFolpcs1-3 0b
ΔFolpcs1-12 0b
表4  不同菌株中分生孢子的产量
  
图10  Folpcs1基因及其上下游侧翼序列片段PCR产物
图11  重组质粒的pZGH1的筛选
图12  回复突变体Folpcs1-C的PCR筛选
图13  不同菌株的表型分析
[1] Placinta C M , D'Mello J P F, Macdonald A M C.Areview of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal Feed Science Technongy, 1999,78(1-2):21-37.
[2] Mirocha C J, Schauerhamer B, Christensen C M , et al. Incidence of zearalenol(Fusarium mycotoxin)in animal feed. Applied and Environmental Microbiology, 1979,38(4):749-750.
[3] Ma L J , Van Der Does H C, Borkovich K A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010,464(7287):367-373.
[4] Cuomo C A, Güldener U , Xu J R, al et. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 2007,317(5843):1400-1402.
[5] Ospina-Giraldo M D, Mu Llins E, Kang S . Loss of function of the Fusarium oxysporum SNF1 gene reduces viru Lence on cabbage and Arabidopsis. Current genetics, 2003,44(1):49-57.
[6] Calero-Nieto F, Di Pietro A , Roncero M I G, et al. Role of the transcriptional activator xln R of Fusarium oxysporum in regu Lation of xylanase genes and virulence. Molecu Lar Plant-microbe Interactions, 2007,20(8):977-985.
[7] Di Pietro A , García-Maceira F I, Meglecz E, et al. A MAP kinase of the vascu Lar wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecu Lar microbiology, 2001,39(5):1140-1152.
[8] 张艳君 , 尖孢镰刀菌亚麻专化型FolMKK2基因在MGV1 MAPK 信号级联途径中的功能解析. 呼和浩特:内蒙古师范大学, 2019.
Zhang Y J , Functional analysis of FolMKK2 gene in MGV1MAPK signaling cascade pathway of Fusarium oxysporum Schl. f.sp.Lini. Hohhot: Inner Mongolia Normal University, 2019.
[9] 李丹 , 尖孢镶刀菌亚麻专化型 FoIBCK1基因敲除及功能研究. 呼和浩特:内蒙古师范大学, 2019.
Li D , A Research on the gene knockout and its function of FolBCK1 gene in Fusarium oxysporum Schl.f.sp.Lini(Bolley) Snyder & Hansen. Hohhot: Inner Mongolia Normal University, 2019.
[10] Chantal O, Sophie T , Marie-noelle B, et al. Colonization of flax roots and early physiological responses of flax cell inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Applied and Environmental Microbiology, 2003,69(9):5453-5460
[11] 杨学, 王玉富, 关凤芝 , 等. 亚麻枯萎病发生规律及其综合防治措施. 中国麻业, 2002,24(1):23-26.
Yang X, Wang Y F, Guan F Z , et al. The measurement of comprehensive prevention and the law of occurrence of flax blight, Plant Fiber and Products, 2002,24(1):23-26.
[12] 王政逸, 李德葆 . 尖孢镰刀菌的遗传多态性. 植物病理学报, 2000,30(30):193-200.
Wang Z Y, Li D B . Genetic diversity in Fusarium oxysporum. Acta Phytopathologica Sinica, 2000,30(30):193-200.
[13] 杨万荣, 薄天岳 . 高抗萎蔫病胡麻品种资源的筛选利用及抗病性遗传浅析. 华北农学报, 1994,9(S1):100-104.
Yang W R, Bo T Y . Utilization and screening of linseed cultivars for high-resistance to Fusarium Wilt and genetic analysis of the disease resistanee,Acta Agriculturace Boreali-sinica, 1994,9(S1):100-104.
[14] 程琳 . 尖孢镰刀菌Qip基因功能初步研究,硕士学位论文. 临汾: 山西师范大学, 2015.
Cheng L . Primary function research on Qip gene in Fusarium oxysporum. Linfen: Shanxi Normal University, 2015.
[15] Booth C. 镰刀菌属. 陈其译.北京: 农业出版社, 1984: 321-322.
Booth C. Fusarium. Cheng Q. BeiJing: Agricultural Press, 1984: 321-322.
[16] Dahlberg K R , Van Etten J L. Physiology and biochemistry of fungal sporulation. Annu Rev Phytopathol, 1982,20:218-301.
[17] Toshiaki O, Takashi T . FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores,macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum. American Society for Microbiology, 2004,3(6):1412-1422.
[18] Son H, Seo Y S, Min K , et al. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathogens, 2011,7(10):e1002310.
[19] Boknam J, Jungwook P, Son H . A Putative transcription factor pcs1 positively regulates both conidiation and sexual reproduction in the cereal pathogen Fusarium graminearum. The Plant Pathology Journal, 2014,30(3):236-244.
[20] 杨学 . 亚麻苗期病害发生特点及防治技术研究. 中国麻叶, 2003,25(5):223-227.
Yang X . The occurance chacteristics and control of diseases at sendling stage of flax. Plant Fiber and Products, 2003,25(5):223-227.
[21] 吴彬 . 小麦赤霉菌Fg AC1基因敲除及功能研究. 呼和浩特:内蒙古师范大学, 2011.
Wu B , Characterization of Fg AC1 gene of Fusarium graminearum. Hohhot: Inner Mongolia Normal University, 2011.
[22] Catlett N L, Lee B, Yoder O C , et al. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Newsletter, 2002,50(49):9-11.
[23] 郭雪芳, 侯占铭 , 小麦赤霉菌FGSG_08948基因敲除及功能研究. 分子植物育种, 2018,16(8):2409-2414.
Guo X-F, Hou Z-M , Knockout and function research of FGSG_08948 gene in Fusarium graminearum. Molecular Plant Breeding, 2018,16(8):2409-2414.
[24] 彭海丽, 侯占铭 . 小麦赤霉菌FGSG_04871基因敲除及功能研究. 内蒙古师范大学学报, 2017,46(3):394-400.
Peng H L, Hou Z M . Research on knockout and function of FGSG_04871 gene in Fusarium graminearum. Journal of Inner Mongolia Normal University, 2017,46(3):394-400.
[25] Tommy C. Sewall, Charles W , et al. abaA controls phialide differentiation in Aspergillus nidulans. The Plant Cell, 1990,2:731-739.
[26] Son H, Kim M G, Min K , et al. AbaA regulates conidiogenesis in the ascomycete fungus Fusarium graminearum. Public Library of Science, 2013,8(9):e72915.
[27] Shengli D, Rahim M, Cornelia K , Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. Eukaryotic Cell, 2009,8:867-876.
[28] Lysoe E, Pasquali M, Breakspear A , et al. The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabo-lism in Fusarium graminearum. Mol Plant -Microbe Interact, 2001,24:54-67.
[29] Zheng W, Zhao X, Xie Q , et al. A conserved homeobox transcription factor Htf1 is required for phialide development and conidiogenesis in Fusarium species. PLoS One, 2012,7:e45432.
[1] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[2] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[3] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[4] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[5] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[6] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[7] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[8] 苏春晓,张晓玉,曾晗,陈压西,阮雄中,杨萍. 肝脏特异性CD36基因敲除小鼠的制备及鉴定 *[J]. 中国生物工程杂志, 2018, 38(8): 26-33.
[9] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.
[10] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[11] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[12] 张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.
[13] 杜红燕, 李天明, 刘金雷, 冯惠勇. 构建尿嘧啶磷酸核糖转移酶基因缺失菌株实现Gluconobacter suboxydans基因组无痕修饰[J]. 中国生物工程杂志, 2016, 36(7): 64-71.
[14] 韩海红, 汪俊卿, 王腾飞, 肖静, 韩登兰, 王瑞明. 一种基于单交换原理的地衣芽孢杆菌基因敲除方法及应用[J]. 中国生物工程杂志, 2016, 36(11): 63-69.
[15] 万方, 张斌, 陈民良, 陈进聪, 陈雪岚. proCputP基因的敲除对钝齿棒杆菌产L-精氨酸生理代谢的影响[J]. 中国生物工程杂志, 2015, 35(8): 51-58.