Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (6): 52-57    DOI: 10.13523/j.cb.20180607
技术与方法     
应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *
戴红苗,付业胜,张令强()
军事科学院军事医学研究院生命组学研究所 蛋白质组学国家重点实验室 北京 100850
Construction of YOD1 Knockout Mice on CRISPR/Cas9 Technology
Hong-miao DAI,Ye-sheng FU,Ling-qiang ZHANG()
State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
 全文: PDF(1757 KB)   HTML
摘要:

目的:应用CRISPR/Cas9技术构建去泛素化酶YOD1基因敲除小鼠。方法:针对YOD1基因设计单链向导RNA(sgRNA)识别序列,构建sgRNA质粒,与Cas9质粒体外转录、纯化后注射入受精卵,通过PCR和测序验证得到F0代阳性小鼠。配繁两代后,取同窝对照的野生型(WT)和敲除(KO)小鼠的主要组织器官研磨,使用免疫印迹(WB)技术检测各组织YOD1蛋白的表达,确证YOD1敲除小鼠模型是否成功建立。统计YOD1杂合子(HET)自交存活后代各基因型比例,分析是否有胚胎致死表型。解剖小鼠分析主要组织器官的表型,进一步利用H.E.染色分析KO小鼠是否存在自发的病理改变。通过血糖耐受实验(GTT)分析KO小鼠的血糖调控能力。结果:基因组测序和WB检测结果显示KO小鼠中YOD1被明显敲除,YOD1敲除小鼠模型成功建立。YOD1杂合子自交后代各基因型比例符合孟德尔定律,提示KO小鼠非胚胎致死。YOD1敲除小鼠肝脏显著小于WT小鼠。GTT结果表明敲除YOD1不影响小鼠的血糖稳态。结论:应用CRISPR/Cas9技术成功构建YOD1基因敲除小鼠。KO小鼠正常出生,无任何胚胎发育缺陷。与WT小鼠相比,KO小鼠肝脏显著减小,但无显著的自发病理变化,KO小鼠血糖控制亦无显著差异。

关键词: CRISPR/Cas9YOD1基因敲除小鼠    
Abstract:

Objective: Construct YOD1 gene knockout mice based on CRISPR/Cas9 technology. Methods: Design and synthesize single-guide RNA (sgRNA) according to the YOD1 sequence in Genbank. Cas9 and sgRNA are transcribed to RNA in vitro, these RNA are then microinjected into zygotes of mice. The genotype is analyzed by PCR and sequencing. After YOD1 heterozygotes self-crossing and analysis of genotype of live offspring at weaning, wild type(WT)and knockout genotype(KO)littermates of YOD1 gene are verified. It is recorded that quantity and ratio of each genotype of live offspring of YOD1 heterozygotes self-crossing. And it is evaluated whether the ratio is in agreement with Mendel’s law of segregation. Protein lysates are made from main organs of the WT and KO littermates. And western blotting is used to assay the expression of YOD1 protein of these tissues. Meanwhile, size and weight of main organs and tissues of KO and WT mice are compared. Then analyze pathological phenotype of liver by H.E. staining. The glucose tolerance test (GTT) are carried out on the male mice of 6 months old. Results: According to PCR analysis and sequencing results, it is chose that mouse with deletion mutation and frameshift mutation in exon 2 of YOD1 gene to breed. After YOD1 heterozygotes self-crossing, WT and KO littermates are generated. According to statistics results, it is in agreement with Mendel’s law of segregation that the ratio of live offspring. Therefore, it is suggested that YOD1 KO mice birth normally without embryonic lethality. Western blotting results show that the expression of YOD1 in main organs is knocked-out significantly. Liver of YOD1 KO mouse is smaller in size than of WT littermate. There is no significant pathological phenotype in liver of YOD1 KO mice. YOD1 KO mice have general glycemic control in a GTT as compared to the control mice. Conclusions: YOD1 gene knockout mice are constructed successfully on CRISPR/Cas9 technology. And YOD1 KO mice birth and live normally without embryonic lethality. Compared to the control mice, livers of YOD1 KO mice are smaller in size and YOD1 KO mice have general glycemic control.

Key words: CRISPR/Cas9    YOD1    Knockout mice
收稿日期: 2018-03-09 出版日期: 2018-07-06
ZTFLH:  Q343  
基金资助: * 国家自然科学基金重点项目(81521064);生物医药与生命科学创新培育研究资助项目(Z151100003915083)
通讯作者: 张令强     E-mail: zhanglq@nic.bmi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
戴红苗
付业胜
张令强

引用本文:

戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.

Hong-miao DAI,Ye-sheng FU,Ling-qiang ZHANG. Construction of YOD1 Knockout Mice on CRISPR/Cas9 Technology. China Biotechnology, 2018, 38(6): 52-57.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180607        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I6/52

图1  YOD1 KO策略
名称 序列(5'-3')
sgRNA-1 CGCAGGTGAAGCTTTTGGTC TGG
sgRNA-2 TGGTGCTCCTAGTTATGTCA GGG
表1  
名称 序列(5'-3')
YOD1-sg-tF1 CCAACAGCAGTTACTTGTTCCCA
YOD1-sg-tR1 CTTCCCCAAAACGATCAATTCTG
表2  引物合成序列
图2  YOD1敲除小鼠基因型
Genotype Quantity Ratio
WT 25 20.33%
HET 66 53.66%
KO 32 26.02%
表3  HET× HET子代各基因型存活数量
图3  KO小鼠的YOD1蛋白显著敲除
图4  YOD1敲除小鼠肝脏较小
图5  葡萄糖耐受实验(n=3)
[1] Fraile J M, Quesada V, Rodrıguez D , et al. DUB and cancer review-new functions and therapeutic options. Oncogene, 2012,31(16):2373-2388.
doi: 10.1038/onc.2011.443 pmid: 21996736
[2] Mevissen T E, Hospenthal M K, Geurink P P , et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell, 2013,154(16):169-184.
doi: 10.1016/j.cell.2013.05.046 pmid: 23827681
[3] Rape M, Hoppe T, Gorr I , et al. Membrane-tethered SPT23 transcription factor by CDC48UFD1_NPL4, a ubiquitin-selective chaperone. Cell, 2001,107(11):667-677.
doi: 10.1016/S0092-8674(01)00595-5 pmid: 11733065
[4] Richly H, Rape M, Braun S , et al. A series of ubiquitin binding factors connects CDC48_p97 to substrate multiubiquitylation and proteasomal targeting. Cell, 2005,120(12):73-84.
doi: 10.1016/j.cell.2004.11.013 pmid: 15652483
[5] Rumpf S, Jentsch S . Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Molecular Cell, 2006,21(9):261-269.
doi: 10.1016/j.molcel.2005.12.014 pmid: 16427015
[6] Ernst R, Mueller B, Ploegh H L , et al. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER, Molecular Cell, 2009,36(11):28-38.
doi: 10.1016/j.molcel.2009.09.016 pmid: 2774717
[7] Sehrawat S, Koenig PA, Kirak O , et al. A catalytically inactive mutant of the deubiquitylase YOD-1 enhances antigen cross-presentation. Blood, 2013,121(12):1145-1156.
doi: 10.1182/blood-2012-08-447409 pmid: 23243279
[8] Papadopoulos C, Kirchner P, Bug M , et al. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. Embo J, 2017,36(2):135-150.
doi: 10.15252/embj.201695148 pmid: 27753622
[9] Schimmack G, Schorpp K, Kutzner K , et al. YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-kB. eLIFE, 2017,6:e22416.
doi: 10.7554/eLife.22416 pmid: 28244869
[10] Kim Y, Kim W, Song Y , et al. Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(7):4691-4696.
doi: 10.1073/pnas.1620306114 pmid: 28416659
[11] Tanji K, Mori F, Miki Y , et al. YOD1 attenuates neurogenic proteotoxicity through its deubiquitinating activity. Neurobiology of Disease, 2018,112(10):14-23.
doi: 10.1016/j.nbd.2018.01.006 pmid: 29330040
[12] Li L, Xie X, Qin J , et al. The nuclear orphan receptor COUP-TFII plays an essential role in adipogenesis, glucose homeostasis, and energy metabolism. Cell Metabolism, 2010,468(5):67-71.
doi: 10.1016/j.cmet.2008.12.002 pmid: 2630393
[13] Garneau J E, Dupuis M E, Villion M , et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(5):67-71.
doi: 10.1038/nature09523 pmid: 21048762
[14] Platt R J, Chen S, Zhou Y , et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014,159(16):440-455.
doi: 10.1016/j.cell.2014.09.014 pmid: 4265475
[15] Ran F A, Hsu P D, Wright J , et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013,8(28):2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 3969860
[16] Zhang F, Wen Y, Guo X . CRISPR/Cas9 for genome editing: progress, implications and challenges, Human Molecular Genetics, 2014,23(7):R40-46.
doi: 10.1093/hmg/ddu125 pmid: 24651067
[17] Hsu P D, Lander E S, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(17):1262-1278.
doi: 10.1016/j.cell.2014.05.010 pmid: 4343198
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[4] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[5] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[6] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[7] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[8] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[9] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[10] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[11] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[12] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[13] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[14] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[15] 刘赛宝,李亚芳,王辉,王伟,冉多良,陈洪岩,孟庆文. 利用CRISPR/Cas9技术构建流感病毒高产细胞系MDCK-Tpl2 -/-*[J]. 中国生物工程杂志, 2019, 39(1): 46-54.