Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (5): 80-87    DOI: 10.13523/j.cb.20190509
研究报告     
去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *
郭超婧,朱琼,张新,李磊,张令强()
军事科学院军事医学研究院生命组学研究所 蛋白质组学国家重点实验室 北京 100850
Generation and Phenotypic Analysis of Hepatic-specific Deubiquitinase OTUB1 Knockout Mice Model
Chao-jing GUO,Qiong ZHU,Xin ZHANG,Lei LI,Ling-qiang ZHANG()
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Academy of Military Medical Sciences,Academy of Military Sciences, Beijing 100850, China
 全文: PDF(1286 KB)   HTML
摘要:

目的:建立OTUB1肝脏特异性基因敲除小鼠模型,初步分析其表型并研究OTUB1基因与肝脏代谢的关系。方法:利用Cre/Loxp系统构建条件性基因敲除小鼠模型,即将OTUB1 fl/fl转基因小鼠与Alb-Cre小鼠杂交,子代自交,得到OTUB1肝特异性基因敲除小鼠并进行鉴定。取同窝对照小鼠(control, NC)和肝特异型基因敲除(hepatic-specific OTUB1 knockout, HCKO)小鼠,通过PCR和免疫印迹(Western blot),确证OTUB1肝脏特异性基因敲除小鼠模型是否成功构建。通过组织病理学方法,分析主要组织器官的形态以及是否存在自发的病变;通过血清生化指标检测肝脏脂代谢水平;通过血糖耐受实验(GTT)分析HCKO小鼠对血糖的控制。结果:基因组测序和Western blot检测结果显示HCKO小鼠肝脏中OTUB1被敲除,其他组织中OTUB1表达水平无变化,证明OTUB1肝脏特异性基因敲除小鼠模型构建成功。HCKO小鼠出生正常,各组织器官无异常,生化指标中总胆固醇水平明显降低,表明OTUB1影响肝脏脂代谢水平。糖耐受实验中HCKO小鼠血糖回落迅速,表明敲除OTUB1影响肝脏血糖调节稳态。结论:应用Cre/Loxp技术成功建立OTUB1肝脏特异性基因敲除小鼠模型,为研究OTUB1在肝脏的生理功能和调控机制提供了重要的动物模型。

关键词: OTUB1Cre/Loxp系统肝脏特异性基因敲除小鼠代谢    
Abstract:

Objective: Construct hepatic-specific knockout mice model of OTUB1, the important deubiquitinase of ovarian tumor domain(OTU) protease superfamily, preliminarily analysis the phenotype of hepatic-specific OTUB1 knockout mice model and explore the physiological function of OTUB1 in liver metabolism.Methods:A mouse model of conventionally disrupting OTUB1 gene in liver using Cre/Loxp system was generate. The obtained OTUB1 fl/fl transgenic mice were crossed with Alb-Cre mice and PCR was used to identify the genotype of its offspring. Furthermore, liver-specific OTUB1 knockout mice were obtained by self-crossing the offspring and PCR was used to identify the genotype. At the same time, OTUB1 protein expression level was detected in tissues and organs of adult mice, include liver and other major organs, from hepatic-specific OTUB1-knockout (HCKO) mice and the control group (control, NC) littermate mice, and Western blot were used to detected and evaluated OTUB1 protein levels. The data indicated whether the hepatic-specific OTUB1 knockout mouse model was successfully constructed. Once comfirmed OTUB1 was truly mutant expression in the liver of HCKO mice, histopathological examination was performed and analyzed the morphology of liver, stomach and spleen, which was analyzed whether there was any spontaneous pathological change existed. In addition, the main biochemical indicators of the liver were detected and analyzed by serum to reflect liver lipid metabolism function in HCKO mice. Moreover, the level of blood glucose metabolism control was recorded and compared between HCKO mice and NC littermate mice through the Glucose Tolerance Test (GTT). Results:The genomic sequencing and Western blot analysis showed that OTUB1 was significantly deleted only in the liver of HCKO mice, but the protein expression level of OTUB1 in other tissues was unchanged at all, where the Alb-Cre transgene is not expressed, such as the kidney, spleen, fat and muscle, which proved that the hepatic-specific OTUB1 knockout mouse model was successfully constructed. Genotyping the offspring of OTUB1 hepatic-conditional knockout mice showed its were born normally. Also, these HCKO mice stayed healthy, without spontaneous histopathological abnormalities in embryonic development. Moreover, the total cholesterol levels in biochemical indicators were significantly lower in HCKO mice less than in NC mice, indicating that the OTUB1 affects liver lipid metabolism level to a certain extent. In glucose tolerance test, the blood glucose level of HCKO mice decreased rapidly after reaching its highest level, suggesting that the homeostasis of liver blood glucose depended on the regulation of OTUB1.Conclusions:The hepatic-specific OTUB1 knockout mouse model was successfully established by Cre/Loxp technology strategy, which are essential for research deubiquitinase OTUB1 in physiological condition,as well as provide an important animal model for studying the physiological functions and regulatory mechanisms of OTUB1 in the liver.

Key words: OTUB1    Cre/Loxp    Hepatic-specific knockout mice    Metabolism
收稿日期: 2018-12-24 出版日期: 2019-06-04
ZTFLH:  Q789  
基金资助: * 国家自然科学基金青年基金资助项目(31700686)
通讯作者: 张令强     E-mail: zhanglq@nic.bmi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭超婧
朱琼
张新
李磊
张令强

引用本文:

郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.

Chao-jing GUO,Qiong ZHU,Xin ZHANG,Lei LI,Ling-qiang ZHANG. Generation and Phenotypic Analysis of Hepatic-specific Deubiquitinase OTUB1 Knockout Mice Model. China Biotechnology, 2019, 39(5): 80-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190509        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I5/80

Primer Sequence(5'-3')
OTUB1-F1 TACTCGCACACCCTACTCTAACTC
OTUB1-R1 TCCTTCTGTGGTCCCCTGTATTG
Cre-F TTGGCCCCTTACCATAACTG
Cre-R GAAGCAGAAGCTTAGGAAGATGG
表1  OTUB1肝脏特异性基因敲除小鼠鉴定引物
图1  OTUB1肝脏特异性基因敲除小鼠构建策略
图2  OTUB1f1/fl转基因小鼠DNA鉴定
图3  OTUB1肝脏特异性基因敲除小鼠的鉴定
图4  HCKO小鼠组织器官
图5  HCKO小鼠血清生化指标(n=4)
图6  葡萄糖耐受实验(n=4)
[1] Mevissen T E, Hospenthal M K, Geurink P P , et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell, 2013,154(1):169-184.
doi: 10.1016/j.cell.2013.05.046
[2] Balakirev M Y, Tcherniuk S O, Jaquinod M , et al. Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Reports, 2003,4(5):517-522.
doi: 10.1038/sj.embor.embor824
[3] Nijman S M, Luna-Vargas M P, Velds A ,et al. A genomic and functional inventory of deubiquitinating enzymes. Cell, 2005,123(5):773-786.
doi: 10.1016/j.cell.2005.11.007
[4] Sowa M E, Bennett E J, Gygi S P , et al. Defining the human deubiquitinating enzyme interaction landscape. Cell, 2009,138(2):389-403.
doi: 10.1016/j.cell.2009.04.042
[5] Soares L, Seroogy C, Skrenta H , et al. Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nature Immunology, 2004,5(1):45-54.
doi: 10.1038/ni1017
[6] Li S, Zheng H, Mao A P , et al. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. The Journal of Biological Chemistry, 2010,285(7):4291-4297.
doi: 10.1074/jbc.M109.074971
[7] Herhaus L, Al-Salihi M, Macartney T , et al. OTUB1 enhances TGF beta signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nature Communications, 2013,4:2519.
doi: 10.1038/ncomms3519
[8] Goncharov T, Niessen K, de Almagro M C , et al. OTUB1 modulates c-IAP1 stability to regulate signalling pathways. The EMBO Journal, 2013,32(8):1103-1114.
doi: 10.1038/emboj.2013.62
[9] Zhou Y, Wu J, Fu X , et al. OTUB1 promotes metastasis and serves as a marker of poor prognosis in colorectal cancer. Molecular Cancer, 2014,13(1):258.
doi: 10.1186/1476-4598-13-258
[10] Baietti M F, Simicek M, Abbasi Asbagh L , et al. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Molecular Medicine, 2016,8(3):288-303.
doi: 10.15252/emmm.201505972
[11] Wang Y, Zhou X, Xu M , et al. OTUB1-catalyzed deubiquitination of FOXM1 facilitates tumor progression and predicts a poor prognosis in ovarian cancer. Oncotarget, 2016,7(24):36681-36697.
[12] Ni Q, Chen J, Li X , et al. Expression of OTUB1 in hepatocellular carcinoma and its effects on HCC cell migration and invasion. Acta Biochimica et Biophysica Sinica, 2017,49(8):680-688.
doi: 10.1093/abbs/gmx056
[13] Chen X, Loryan I, Payan M , et al. Effect of transporter inhibition on the distribution of cefadroxil in rat brain. Fluids Barriers CNS, 2014,11(1):25.
doi: 10.1186/2045-8118-11-25
[14] Pettitt S J, Liang Q, Rairdan X Y , et al. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods, 2009,6(7):493-495.
doi: 10.1038/nmeth.1342
[15] Skarnes W C, Rosen B, West A P , et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature, 2011,474(7351):337-342.
doi: 10.1038/nature10163
[16] Bradley A, Anastassiadis K, Ayadi A , et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome, 2012,23(9-10):580-586.
doi: 10.1007/s00335-012-9422-2
[17] Brown S D, Moore M W . The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome, 2012,23(9-10):632-640.
doi: 10.1007/s00335-012-9427-x
[18] Koscielny G, Yaikhom G, Iyer V , et al. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res, 2014,42(D1):D802-809.
doi: 10.1093/nar/gkt977
[19] Pasupala N, Morrow M E, Que L T , et al. OTUB1 non-catalytically stabilizes the E2 ubiquitin-conjugating enzyme UBE2E1 by preventing its autoubiquitination. The Journal of Biological Chemistry, 2018,293(47):18285-18295.
doi: 10.1074/jbc.RA118.004677
[20] Bergeron R, Russell R R, Young L H , et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol, 1999,276(5 Pt 1):E938-944.
doi: 10.1152/ajpcell.1999.276.4.C938
[21] Andreelli F, Foretz M, Knauf C , et al. Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology, 2006,147(5):2432-2441.
doi: 10.1210/en.2005-0898
[22] Scholz C C, Rodriguez J, Pickel C , et al. FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1. PLoS Biology, 2016,14(1):e1002347.
doi: 10.1371/journal.pbio.1002347
[23] Bijland S, Mancini S J, Salt I P . Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (Lond), 2013,124(8):491-507.
doi: 10.1042/CS20120536
[24] Zhao L, Wang X, Yu Y , et al. OTUB1 protein suppresses mTOR complex 1 (mTORC1) activity by deubiquitinating the mTORC1 inhibitor DEPTOR. The Journal of Biological Chemistry, 2018,293(13):4883-4892.
doi: 10.1074/jbc.M117.809533
[25] Owen J L, Zhang Y, Bae S H , et al. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(40):16184-16189.
doi: 10.1073/pnas.1213343109
[27] Peterson T R, Sengupta S S, Harris T E , et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell, 2011,146(3):408-420.
doi: 10.1016/j.cell.2011.06.034
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[3] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[6] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[7] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[8] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[9] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[10] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[11] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[12] 于春洋,张春,郭乐,万盼盼,黄越,王峰,刘昆梅. 海马皮质特异性敲除AEG-1基因小鼠的构建及其行为学初步研究*[J]. 中国生物工程杂志, 2020, 40(11): 10-20.
[13] 贾振伟. SIRT1功能及其对卵泡发育和卵母细胞成熟的调控作用 *[J]. 中国生物工程杂志, 2020, 40(10): 51-56.
[14] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[15] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.