Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 9-20    DOI: 10.13523/j.cb.1908034
研究报告     
海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *
郭胜楠1,2,**,李信晓2,3,**,王峰2,3,刘昆梅2,丁娜2,扈启宽1,2,***(),孙涛2,3,***()
1 宁夏医科大学基础医学院 银川 750004
2 宁夏医科大学宁夏颅脑疾病重点实验室 银川 750004
3 宁夏医科大学总医院 银川 750004
Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus
GUO Sheng-nan1,2,**,LI Xin-xiao2,3,**,WANG Feng2,3,LIU Kun-mei2,DING Na2,HU Qi-kuan1,2,***(),SUN Tao2,3,***()
1 Department of Physiology, Basic Medical School of Ningxia Medical University, Yinchuan 750004, China
2 Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan 750004, China
3 Department of Neurosurgery, General hospital of Ningxia Medical University, Yinchuan 750004, China
 全文: PDF(31431 KB)   HTML
摘要:

建立基于Cre/loxp重组酶系统调控的海马和新皮质特异性GABAA受体γ2亚基(GABRG2)基因条件基因敲除小鼠模型,为深入研究海马区和新皮质GABRG2在癫痫发生中的功能作用提供动物模型.将引进的GABRG2 fl/wt转基因小鼠与海马和新皮质特异性表达Cre +/+重组酶工具鼠分别进行繁配和鉴定,然后再将2种小鼠进行杂交并对其子代小鼠的基因型进行鉴定,其子代基因型为GABRG2 fl/wtCre +的小鼠为构建的海马区和新皮质特异性GABRG2基因条件性敲除小鼠.利用PCR技术鉴定小鼠基因型,Real-Time PCR和Western blot技术检测GABRG2基因在小鼠海马和新皮质中的mRNA水平和蛋白质水平的表达情况.PCR结果显示子代小鼠基因型符合GABRG2 fl/wtCre +;海马与新皮质特异性GABRG2基因敲除小鼠海马和新皮质中GABRG2的mRNA水平和蛋白质水平显著低于对照组;热造模过程中,实验组小鼠癫痫发作更明显.利用Cre/Loxp技术成功构建了海马与新皮质GABRG2基因敲除小鼠,可为进一步研究GABRG2在癫痫发生中的作用机制奠定基础.

关键词: GABRG2基因遗传性癫痫伴热性惊厥附加症海马与新皮质Cre-Loxp重组酶系统基因敲除    
Abstract:

To establish and identify the neocortex and hippocampus specific GABAA receptor γ2 subunit (GABRG2) knockout mice via Cre/Loxp conditional gene knockout technology, and provide the important animal model for further investigating the functional role of GABRG2 in hippocampus and neocortex GABRG2 in epileptogenesis. The constructed GABRG2 fl/wt mice and the mice that express Cre recombinase to approximately 88% of the neurons of the neocortex and hippocampus were bred and authenticated, respectively. Mating and identification of GABRG2 fl/fl mice with Cre mice were carried out, and the GABRG2 fl/wt Cre + mice were screened. The mouse genotypes were identified by PCR. The Real-Time PCR and Western blot were used to detect the expression of GABRG2 mRNA and protein levels in mouse neocortex and hippocampus. PCR results indicate that mouse genotypes are consistent with GABRG2 fl/wt Cre +. Compared with control group mice, GABRG2 mRNA and protein levels were significantly reduced. During the temperature elevation, the GABRG2 fl/wt Cre + mice had significant seizures. Based on the Cre/loxp conditional gene knockout technology, that succeed in building a group of neocortex and hippocampus specific GABRG2 gene knockout mice which can stably go down to the future generation, which would supply a technical basis for animal models in further researches of the regulation and mechanism of GABRG2 gene in the progress of epilepsy.

Key words: GABRG2    Genetic    epilepsy with ebrile eizures plus    Neocortex and hippocampus    Cre/Loxp recombination system    Gene knockout
收稿日期: 2019-08-20 出版日期: 2020-04-18
ZTFLH:  Q78  
基金资助: * 宁夏回族自治区"十三五"重大科技项目(2016BZ07);国家自然科学基金(81660226,81971085)
通讯作者: 扈启宽,孙涛     E-mail: huqikuan@163.com;suntao6699@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭胜楠
李信晓
王峰
刘昆梅
丁娜
扈启宽
孙涛

引用本文:

郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.

GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus. China Biotechnology, 2020, 40(3): 9-20.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1908034        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/9

图1  海马和新皮质组织特异性GABRG2基因敲除小鼠构建策略
图2  GABRG2 flox小鼠鉴定引物设计示意图
No. Primer name Sequence Expected band seize Primer illustration
1 Gabrg2-ssDNA-5wt-tF1 GATAAATGGTTGGCTCTAGC Fl=248bp
Wt=158bp
5'初筛探针
Neo-3F
Gabrg2-ssDNA-5wt-tR1 ATTAGATTCGCTCCCAACTCC
2 Gabrg2-ssDNA-3wt-tF1 GGGTACATTCACTTATAGAACAACC Fl=294bp
Wt=201bp
3'初筛探针
ZMK2F4
Gabrg2-ssDNA-3wt-tR1 CCAACATTAAGCCTTATGATATTCC
3 Gabrg2-ssDNA-5tF1 CTGGAGTGCTGATAGTAGTGAAAGG Fl=534bp
Wt=none
5'(D5-5)
Common-En2R CCAACTGACCTTGGGCAAGAACAT
4 Zmk-2F4 GCATCGCATTGTCTGAGTAGGTG Fl=588bp
Wt=none
3'(D3-3)
Gabrg2-ssDNA-3tR1 GACCTACTGTATGCTGCAACTGTG
5 Gabrg2-ssDNA-5tF1 CTGGAGTGCTGATAGTAGTGAAAGG Fl=1962bp
Wt=none
5'allele
(D3-5)
LAR3 CACAACGGGTTCTTCTGTTAGTCC
6 Neo-3F TCTGAGGCGGAAAGAACCAG Fl=2013bp
Wt=none
3'allele
(D5-3)
Gabrg2-ssDNA-3tR1 GACCTACTGTATGCTGCAACTGTG
表1  GABRG2 flox小鼠基因型鉴定的引物信息
No. Primer name Sequence Expected band seize Primer illustration
1 Gabrg2-ssDNA-5wt-tF1 GATAAATGGTTGGCTCTAGC Fl=248bp
WT=158bp
Null=none
鉴定是否纯合
Gabrg2-ssDNA-5wt-tR1 ATTAGATTCGCTCCCAACTCC
2 Zmk-2F4 GCATCGCATTGTCTGAGTAGGTG Fl=588bp
WT=none
Null=none
鉴定3'loxp
Gabrg2-ssDNA-3tR1 GACCTACTGTATGCTGCAACTGTG
3 Cre-up GCCTGCATTACCGGTCGATGC T:481bp 鉴定Emxl-Cre
Cre-low CAGGGTGTTATAAGCAATCCC
4 Gabrg2-null-tF1 ATAGCTGTGACGACGACGGGTG Fl=1582bp
WT=1669bp
Null=424bp
鉴定null
Gabrg2-null-tR1 CCCTCCTGTGAGTGAGGTTACTTC
表2  GABRG2fl/wtCre+小鼠基因型鉴定的引物信息
图3  F0代与背景鼠回交子代基因型PCR鉴定结果
图4  表达Cre重组酶的小鼠基因型鉴定结果
图5  基因型GABRG2fl/wtCre+/-小鼠与GABRG2fl/wtCre+/-小鼠繁配后代基因型鉴定结果
图6  GABRG2蛋白在NC组和KO组的表达水平
图7  小鼠颅内脑电图电极植入
图8  升高体内核心温度诱发GABRG2fl/wtCre+小鼠癫痫发作,而对照组小鼠无癫痫发作
[1] Kumamoto E . The pharmacology of amino-acid responses in septal neurons. Prog Neurobiol, 1997,52(3):197-259.
[2] Whiting P J . The GABA-A receptor gene family: new targets for therapeutic intervention. Neurochem Int, 1999,34(5):387-390.
[3] Laurie D J, Wisden W, Seeburg P H . The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci, 1992,12(11):4151-4172.
[4] Asarnow R F ,LoPresti C, Guthrie D, et al. Developmental outcomes in children receiving resection surgery for medically intractable infantile spasms. Dev Med Child Neurol, 1997,39(7):430-440.
[5] Daniel R T, Meagher-Villemure K, Roulet E , et al. Surgical treatment of temporoparietooccipital cortical dysplasia in infants: report of two cases. Epilepsia, 2004,45(7):872-876.
[6] Duchowny M, Jayakar P, Resnick T , et al. Epilepsy surgery in the first three years of life. Epilepsia, 1998,39(7):737-743.
[7] Duchowny M S, Resnick T J, Alvarez L A , et al. Focal resection for malignant partial seizures in infancy. Neurology, 1990,40(6):980-984.
[8] Duncan J S, Sander J W, Sisodiya S M , et al. Adult epilepsy. Lancet, 2006,367(9516):1087-1100.
[9] Kwan P, Brodie M J . Neuropsychological effects of epilepsy and antiepileptic drugs. Lancet, 2001,357(9251):216-22.
[10] Bell G S, Neligan A, Sander J W . An unknown quantity-the worldwide prevalence of epilepsy. Epilepsia, 2014,55(7):958-962.
[11] Espinosa-Jovel C, Toledano R, Aledo-Serrano á , et al. Epidemiological profile of epilepsy in low income populations. Seizure, 2018,56:67-72.
[12] Dua T, de Boer H M, Prilipko LL , et al. Epilepsy care in the world: results of an ILAE/IBE/WHO global campaign against epilepsy survey. Epilepsia, 2006,47(7):1225-1231.
[13] Sadr S S, Javanbakht J, Javidan A N , et al. Descriptive epidemiology: prevalence, incidence, sociodemographic factors, socioeconomic domains, and quality of life of epilepsy: an update and systematic review. Arch Med Sci, 2018,14(4):717-724.
[14] Trinka E, Kwan P, Lee B , et al. Epilepsy in Asia: Disease burden, management barriers, and challenges. Epilepsia, 2019,60(Suppl 1):7-21.
[15] Song P, Liu Y, Yu X , et al. Prevalence of epilepsy in China between 1990 and 2015: A systematic review and meta-analysis. J Glob Health, 2017,7(2):020706.
[16] Yu Z, Dong K, Chang H , et al. The epidemiological and clinical characteristics study on epilepsy in 8 ethnic groups of China. Epilepsy Res, 2017,138:110-115.
[17] Baulac S, Huberfeld G, Gourfinkel-An I , et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet, 2001,28(1):46-48.
[18] Harkin L A, Bowser D N, Dibbens L M , et al. Truncation of the GABAA-receptor γ2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet, 2002,70(2):530-536.
[19] Audenaert D, Schwartz E, Claeys K G , et al. A novel GABRG2 mutation associated with febrile seizures. Neurology, 2006,67(4):687-690.
[20] Frugier G, Coussen F, Giraud M F , et al. A gamma 2(R43Q) mutation, linked to epilepsy in humans, alters GABAA receptor assembly and modifies subunit composition on the cell surface. J Biol Chem, 2007,282(6):3819-3828.
[21] Lachance-Touchette P, Brown P, Meloche C , et al. Novel α1 and γ2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy. Eur J Neurosci, 2011,34(2):237-249.
[22] Kananura C, Haug K, Sander T , et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol, 2002,59(7):1137-1141.
[23] Sun H, Zhang Y, Liang J , et al. SCN1A, SCN1B, and GABRG2 gene mutation analysis in Chinese families with generalized epilepsy with febrile seizures plus. J Hum Genet, 2008,53(8):769-674.
[24] Kang J Q, Shen W, Lee M , et al. Slow degradation and aggregation in vitro of mutant GABAA receptor gamma2(Q351X) subunits associated with epilepsy. J Neurosci, 2010,30(41):13895-13905.
[25] Hernandez C C, Gurba K N, Hu N , et al. The GABRA6 mutation, R46W, associated with childhood absence epilepsy, alters α6β2γ2 and α6β2δ GABAA receptor channel gating and expression. J Physiol, 2011,589(Pt 23):5857-5878.
[26] Ishii A, Kanaumi T, Sohda M , et al. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy. Epilepsy Res, 2014,108(3):420-432.
[27] Orenstein N, Goldberg-Stern H, Straussberg R , et al. A de novo GABRA2 missense mutation in severe early-onset epileptic encephalopathy with a choreiform movement disorder. Eur J Paediatr Neurol, 2018,22(3):516-524.
[28] Shen D, Hernandez C C, Shen W , et al. De novo GABRG2 mutations associated with epileptic encephalopathies. Brain, 2017,140(1):49-67.
[29] Tian M, Mei D, Freri E , et al. Impaired surface αβγ GABAA receptor expression in familial epilepsy due to a GABRG2 frameshift mutation. Neurobiol Dis, 2013,50:135-141.
[30] Sancar F, Czajkowski C . A GABAA receptor mutation linked to human epilepsy (γ2R43Q) impairs cell surface expression of αβγ receptors. J Biol Chem, 2004,279(45):47034-47039.
[31] Kang J Q, Shen W, Zhou C , et al. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci, 2015,18(7):988-996.
[32] Balan S, Sathyan S, Radha S K , et al. GABRG2, rs211037 is associated with epilepsy susceptibility, but not with antiepileptic drug resistance and febrile seizures. Pharmacogenet Genomics, 2013,23(11):605-610.
[33] Butil? A T, Zazgyva A, Sin A I , et al. GABRG2 C588T gene polymorphisms might be a predictive genetic marker of febrile seizures and generalized recurrent seizures: a case-control study in a Romanian pediatric population. Arch Med Sci, 2018,14(1):157-166.
[34] Abou El Ella S S, Tawfik M A ,Abo El Fotoh W M M, et al. The genetic variant "C588T" of GABARG2 is linked to childhood idiopathic generalized epilepsy and resistance to antiepileptic drugs. Seizure, 2018,60:39-43.
[35] Kang J Q, Shen W, Macdonald R L . Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J Neurosci, 2006,26(9):2590-2597.
[36] Chandra D, Korpi E R, Miralles C P , et al. GABAA receptor gamma 2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines. BMC Neurosci, 2005,6:30.
[37] Oakley J C, Kalume F, Yu F H , et al. Temperature-and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy. Proc Natl Acad Sci USA, 2009,106(10):3994-3999.
[38] Han S, Tai C, Westenbroek R E , et al. Autistic-like behaviour in Scn1a +/- mice and rescue by enhanced GABA-mediated neurotransmission . Nature, 2012,489(7416):385-390.
[39] King S M . Escape-related behaviours in an unstable elevated and exposed environment. I. A new behavioural model of extreme anxiety. Behav Brain Res, 1999,98(1):113-126.
[40] Warner T A, Liu Z, Macdonald R L , et al. Heat induced temperature dysregulation and seizures in Dravet Syndrome/GEFS+ Gabrg2+/Q390X mice. Epilepsy Res, 2017,134:1-8.
[41] Wallace R H, Marini C, Petrou S , et al. Mutant GABAA receptor γ2-subunit in childhood absense epilepsy and febrile seizures. Nature genetics, 2001,28(1) : 49-52.
[42] Wang X M, Xu M C, Du L Z . Association analysis of gamma2 subunit of gamma-aminobutyric acid (GABA) type A receptor and voltage-gated sodium channel type II alpha-polypeptide gene mutation in southern Chinese children with febrile seizures. J Child Neurol, 2007,22(6):714-719.
[43] Hindocha N, Nabbout R, Elmslie F , et al. A case report of a family with overlapping features of autosomal dominant febrile seizures and GEFS+. Epilepsia, 2009,50(4):937-942.
[44] Salam S M, Rahman H M, Karam R A . GABRG2 gene polymorphisms in Egyptian children with simple febrile seizures. Indian J Pediatr, 2012,79(11):1514-1516.
[45] Hung K L, Liang J S, Wang J S , et al. Association of a novel GABRG2 splicing variation and a PTGS2/COX-2 single nucleotide polymorphism with Taiwanese febrile seizures. Epilepsy Res, 2017,129:1-7.
[46] Ito M, Yamakawa K, Sugawara T , et al. Phenotypes and genotypes in epilepsy with febrile seizures plus. Epilepsy Res, 2006,70(Suppl1):S199-205.
[47] Kos C H . Cre/loxP system for generating tissue-specific knockout mouse models. Nutr Rev, 2004,62(6Pt1):243-246.
[48] Schmidt-Supprian M, Rajewsky K . Vagaries of conditional gene targeting. Nat Immunol, 2007,8(7):665-668.
[1] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[2] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[3] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[4] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[5] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[6] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[7] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[8] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[9] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[10] 张保惠,熊华龙,张天英,袁权. 基于水疱性口炎病毒(VSV)的溶瘤病毒研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 53-62.
[11] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.
[12] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[13] 程平,张洋子,马翾,陈旭,朱保庆,许文涛. 刺激响应型DNA水凝胶的性质及其应用 *[J]. 中国生物工程杂志, 2020, 40(3): 132-143.
[14] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[15] 盛晓菁,齐晓雪,徐蕾,戚智青,刁勇. 基因克隆及组装技术的研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 133-139.