Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (12): 86-97    DOI: DOI:10.13523/j.cb.20161213
技术与方法     
多质粒共转化组合筛选方法构建木糖利用酿酒酵母的研究
刘宝利, 刘高冈, 林秋卉, 李炳志, 元英进
天津大学化工学院 系统生物工程教育部重点实验室 天津化学化工协同创新中心 天津 300072
Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method
LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin
School of Chemical Engineering, Key Laboratory of Systems Bioengineering(Ministry of Education), Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 全文: PDF(2325 KB)   HTML
摘要:

快速得到目标代谢路径相关基因的大量组合以及实现组合库的高效筛选,是合成生物学领域中一个重要的研究内容。建立了三质粒共转化酵母菌株组合筛选方法并以XR-XDH木糖代谢路径在酿酒酵母中的应用为例进行阐释。首先利用Yeast Golden Gate连接法在三种不同表达载体上构建不同启动子控制下的XR、XDH、XK单个基因的表达盒,然后直接用三质粒共转化系统构建100种不同组合的重组酵母。经过木糖平板初筛筛选出16个能利用木糖的组合,将这16个组合对应的三基因表达模块组装至同一表达载体后转化底盘菌株,再通过限氧发酵进行复筛,最终筛选出木糖代谢能力、木糖醇和乙醇生成速率最优菌株Sc-LQH35(TDH3p-XR-ACS2t-FBA1p-XDH-ENO2t-PDC1p-XK-ASC1t),在培养基中含有20 g/L木糖的条件下,其木糖醇产量为7.14 g/L,乙醇产量为5.92 g/L,而菌株Sc-LQH39(TDH3p-XR-ACS2t-FBA1p-XDH-ENO2t-ZEO1p-XK-ASC1t)则表现出较强的木糖醇生产能力,特别在限氧发酵时,其木糖醇得率可高达0.71 g/g。三质粒共转化组合筛选方法实现了木糖利用菌株的灵活构建和快速筛选,并成功得到具有优良木糖利用性能的酿酒酵母菌株,表明其在重组菌株的构建和筛选工作中有一定的应用价值。

关键词: 酿酒酵母组合筛选木糖利用共转化合成生物学    
Abstract:

In the field of synthetic biology, quick construction of target metabolic pathways and rapid screening of combinatorial libraries is of great significance. A combinatorial screening method by co-transforming Saccharomyces cerevisiae with three plasmids was established and XR-XDH pathway was constructed in Saccharomyces cerevisiae as an application of the method. The gene expression cassettes of XR,XDH and XK were constructed efficiently using the Yeast Golden Gate (yGG) method. 100 recombinant strains with different promoter combinations were obtained through the three plasmids co-transformation system. Then the colonies were screened through spot assay on 2% SX plate and 16 colonies were chosen. In order to make the property more stable, the separate three gene modules of the corresponding colonies were assembled together to the expression vector pRS426, and then transformed to BY4741 to obtain the new recombinant strains. Oxygen-limited fermentation was carried out to test these strains. Among the 16 strains, Sc-LQH35(TDH3p-XR-ACS2t-FBA1p-XDH-ENO2t-PDC1p-XK-ASC1t) showed the highest products yield and fastest xylose utilization speed. Under oxygen-limited condition, xylitol and ethanol could accumulate to 7.14 g/L and 5.92 g/L separately when the medium contained 20 g/L xylose. The strain Sc-LQH39(TDH3p-XR-ACS2t-FBA1p-XDH-ENO2t-ZEO1p-XK-ASC1t) showed strong ability of producing xylitol on the oxygen-limited fermentation and xylitol yield could reach as high as 0.71 g/g. Three-plasmid co-transformation combinatorial screening method realized the flexible construction and rapid screening of the xylose-utilizing strains. Strains with high fermenting performance were obtained, and it showed that the method has great potential application in construction and screening of the recombinant strains.

Key words: Xylose utilizing    Saccharomyces cerevisiae    Co-transformation    Synthetic biology    Combinatorial screening
收稿日期: 2016-05-03 出版日期: 2016-12-25
ZTFLH:  Q815  
基金资助:

国家重点基础研究发展计划(2013CB733601)、国家自然科学基金(21390203)资助项目

通讯作者: 李炳志     E-mail: bzli@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘宝利, 刘高冈, 林秋卉, 李炳志, 元英进. 多质粒共转化组合筛选方法构建木糖利用酿酒酵母的研究[J]. 中国生物工程杂志, 2016, 36(12): 86-97.

LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method. China Biotechnology, 2016, 36(12): 86-97.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/DOI:10.13523/j.cb.20161213        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I12/86

[1] Jeppsson M, Bj? rn J, Jensen P R, et al. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast, 2003, 20(15):1263-1272.
[2] Jin H, Fan S, Wang C, et al. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. Bmc Biotechnology, 2014, 14(1):1-10.
[3] Aguilera J, Prieto J. The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Current Genetics, 2001, 39(39):273-283.
[4] Bamba T, Hasunuma T, Kondo A. Disruption of PHO13 improves ethanol production via the xylose isomerase pathway. Amb Express, 2016, 6(1):1-10.
[5] Oh Y J, Lee T H, Lee S H, et al. Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. Journal of Molecular Catalysis B Enzymatic, 2007, 47(1):37-42.
[6] Omotajo D, Tate T, Cho H, et al. Distribution and diversity of ribosome binding sites in prokaryotic genomes. Bmc Genomics, 2014, 16(604):1-8.
[7] Xin Q, Jian Z, Liu G G, et al. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Frontiers in Microbiology, 2015, 6:1165.
[8] Kim J H, Block D E, Mills D A. Simultaneous consumption of pentose and hexose sugars:an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied Microbiology & Biotechnology, 2010, 88(5):1077-1085.
[9] Chu B C, Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances, 2007, 25(5):425-441.
[10] Jin Y S, Ni H J, Jeffries T W. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Applied & Environmental Microbiology, 2003, 69(1):495-503.
[11] Hahn-Hägerdal B, Karhumaa K, Fonseca C, et al. Towards industrial pentose-fermenting yeast strains. Applied Microbiology & Biotechnology, 2007, 74(5):937-953.
[12] Du J, Yuan Y, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Methods in Molecular Biology, 2013, 985(18):177-209.
[13] Kim B, Du J, Eriksen D T, et al. Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Applied & Environmental Microbiology, 2013, 79(3):931-941.
[14] Agmon N, Mitchell L A, Cai Y, et al. Yeast Golden Gate (yGG) for the efficient assembly of S. cerevisiae transcription units. Acs Synthetic Biology, 2015, 4(7):853-859.
[15] Wang X, Bai X, Chen D F, et al. Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose? derived inhibitors. Biotechnology for Biofuels, 2015, 8:142-154.
[16] Wei W J, Michael C, David B, et al. A systematic approach to reconstructing transcription networks in Saccharomy cescerevisiae. Proceedings of the National Academy of Sciences, 2002, 99(26):16893-16898.
[17] Lin Q, Jia B, Mitchell L A, et al. RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. Acs Synthetic Biology, 2015, 4(3):213-220.
[18] Kim S R, Ha S J, Kong I I, et al. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14(4):336-343.
[19] Toivari M H, Salusjärvi L, Ruohonen L, et al. Endogenous xylose pathway in Saccharomyces cerevisiae. Applied & Environmental Microbiology, 2004, 70(6):3681-3686.
[20] Zha J, Shen M, Hu M, et al. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. Journal of Industrial Microbiology & Biotechnology, 2014, 41(1):27-39.
[21] Zha J, Hu M L, Shen M H, et al. Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation. Frontiers in Microbiology, 2012, 3:355.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[6] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[7] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[8] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[9] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[10] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[11] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[12] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[13] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[14] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[15] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.