Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (8): 59-67    DOI: 10.13523/j.cb.20150809
研究报告     
禾谷镰刀菌中FgPDE1基因的敲除及其功能的研究
常玉梅, 侯占铭
内蒙古师范大学生命科学与技术学院 呼和浩特 010020
Research on Gene Knockout and Function of FgPDE1 in Fusarium graminearum
CHANG Yu-mei, HOU Zhan-ming
College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
 全文: PDF(933 KB)   HTML
摘要:

目的:旨在敲除禾谷镰刀菌Fusarium graminearum FgPDE1基因,确定其缺失突变体表型,从而分析该基因的生物学功能。方法:应用Split-marker技术构建含有潮霉素基因敲除盒,通过PEG介导原生质体转化,PCR筛查抗潮霉素转化子以获得缺失突变体ΔFgPDE1,根据突变体表型变化及致病性的检测对FgPDE1基因的功能进行分析。结果:采用Split-marker技术,成功构建了FgPDE1基因敲除盒;PEG介导转化禾谷镰刀菌原生质体后成功获得转化子。经PCR筛查,得到3个PCR确认的敲除突变体;表型观察发现,ΔFgPDE1菌落的外型及菌落生长速度与野生型没有明显差异。孢子侵染西红柿果实实验证明:以西红柿为侵染宿主,相对于野生型,突变体致病性没有明显减弱;但突变体分生孢子产量显著下降。结论:FgPDE1基因可能与禾谷镰刀菌分生孢子的形成有关。

关键词: 禾谷镰刀菌FgPDE1基因敲除Split-Marker    
Abstract:

Objective: The purpose is to knock out FgPDE1 gene in Fusarium graminearum, so as to identify the function of the gene through analysis of the phenotype of the deletion mutants. Methods: The Split-marker strategy is applied to build knockout cassette containing hygromycin phosphotransferase gene and anti-hygromycin transformants are obtained by using PEG-mediated protoplast transformation. The FgPDE1 gene deletion mutants are screened by the absent of the PCR products of the FgPDE1 gene. The function of the gene is analyzed according to the mutant phenotype and pathogenicity detection. Results: The Split-marker knockout cassette is successfully constructed and the transformants are obtained after PEG-mediated transformation of the protoplasts of PH-1 and then, three FgPDE1 gene deletion mutants are obtained through PCR screening. The phenotypic analysis revealed that there is no significant difference between ΔFgPDE1 and wild type in terms of colony phenotype and growth rate. The virulence assay by fruit of tomato infected by conidiospores show that the mutants do not decrease greatly in pathogenicity. However, microscopic observation show that the conidiospore amount of ΔFgPDE1 reduce significantly. Conclusions: FgPDE1 gene might be related to conidia formation of the Fusarium graminearum.

Key words: Fusarium graminearum    FgPDE1    Gene knockout    Split-marker
收稿日期: 2015-03-10 出版日期: 2015-08-25
ZTFLH:  Q789  
基金资助:

国家自然科学基金资助项目(31160280)

通讯作者: 侯占铭     E-mail: 670645337@qq.com;hou42@wisc.edu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

常玉梅, 侯占铭. 禾谷镰刀菌中FgPDE1基因的敲除及其功能的研究[J]. 中国生物工程杂志, 2015, 35(8): 59-67.

CHANG Yu-mei, HOU Zhan-ming . Research on Gene Knockout and Function of FgPDE1 in Fusarium graminearum. China Biotechnology, 2015, 35(8): 59-67.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150809        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I8/59


[1] 王裕中,米勒.中国小麦赤霉病菌优势种—禾谷镰刀菌产毒素能力的研究.真菌学, 1994,13(3):229-234. Wang Y Z, Miller J D. Toxin producing potential of Fusarium graminearum from China. Acta Mycologica Sinica, 1994, 13(3):229-234.

[2] Gale L R, Chen L F, Hernick C A, et al. Population analysis of Fusarium graminearum from wheat fields in eastern China. Ecology and Population Biology, 2002, 92(12): 1315-1322.

[3] 袁婷露,曹秀云. 禾谷镰刀菌致病力和致病基因的研究进展. 安徽农业科学, 2008, 36(14): 5915- 5916, 5916,5934. Yuan T L, Cao X Y. Research progress of virulence and pathogenicity genes of Fusarium graminearum. Journal of Anhui Agricultural Sciences, 2008, 36(14): 5915-5916,5934.

[4] 张大军,邱德文,蒋伶活.禾谷镰刀菌基因组学研究进展.安徽农业科学,2009, 37(17): 7892- 7894. Zhang D J, Qu D W, Jang L H. Research progress on the genomics of Fusarium graminearum. Journal of Anhui Agricultural Sciences, 2009, 37(17): 7892- 7894.

[5] 王琢,闫培生.真菌毒素产生菌的分子鉴定研究进展.中国农业科技导报,2010,12(5):42-50. Wang Z,Yan P S. Research progress on molecular identification of mycotoxin-producing fungi. Journal of Agicultural Science and Technology, 2010, 12(5):42-50.

[6] 戴大凯,贾晓静,武东霞,等.小麦赤霉病菌多菌灵抗性群体的扩散路径分析—基于致病菌种类及所产毒素化学型鉴定和抗药性检出的时序性.农药学学报, 2013,15(3):279-285. Dai D K, Jia X J, Wu D X, et al. Analysis of diffusion path of carbendazim-resistance population of Fusarium head bligh-based on Fusarium species, mycotoxin chemotype and resistance timing. Chinese Journal of Pesticide Science, 2013,15(3):279-285.

[7] McMullen M P, Jones R, Gallenberg D. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Disease, 1997, 81(12):1340-1348.

[8] Windels C E. Economic and social impacts of Fusarium head blight:changing farms and rural communities in the northern Great Plains. Phytopathology, 2000, 90:17-21.

[9] 张雁南,樊坪升.禾谷镰刀菌对多菌灵抗性的监测及其演变规律.农药,2009,48(8):603-613. Zhang Y N, Fan P S. Monitoring and evolvement of resistance to carbendazim of Fusarium graminearum. Agrochemicals, 2009, 48(8):603-613.

[10] 陆维忠,程顺和.细胞工程在小麦抗赤霉病育种中的利用.江苏农业学报,1998,14(1): 9-14. Lu W Z, Cheng S H. Study on utilization of cell engineering in breeding wheat for scab-resistance. JiangSu Academy of Agricultural Sciences, 1998,14(1):9-14.

[11] Brown D W, Robert A E. Proctor Fusarium genomic resources: Tools to limit crop diseases and mycotoxin contamination. My-copathologia, 2006, 162: 191-199.

[12] Jurgenson J E, BowdenR L,Zeller K A,et al. A genetic map of Gibberella zeae (Fusarium graminearum).Genetics, 2002, 160(4):1451-1460.

[13] Hou Z M, Xue C Y, Peng Y L, et al. A mitogen-activated protein kinase gene (MGV1)in Fusarium graminearum is required for female fertility, heterokaryon formation and plant infection. Mol Plant Microbe Interact, 2002, 15(11): 1119-1127.

[14] Christian A V, Wilhelm S. A secret lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant Journal, 2005, 42: 364-375.

[15] Lysoe E, Klemsdal S S, Bone K R, et al. The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Applied and Environmental Micorobiology, 2006, 72(6): 3924 -3932.

[16] Brunner K, Lichtenauer A M, Kratochwill K, et al. Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum. Current Genetics, 2007, 52(5-6): 213-220.

[17] Kim J H, Kim H W, Heo D H, et al. FgEnd1 is a putative component of the endocytic machinery and mediates ferrichrome uptake in F. graminearum. Current Genetics, 2009, 55(6):593-600.

[18] Son H, Kim M G, Chae S K, et al. FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum. Journal of Microbiology, 2014, 52(11):930-939.

[19] Lee Y, Min K, Son H, et al. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Molecular Plant-Microbe Interactions, 2014, 27(12):1344-1355.

[20] Ramanujam R, Naqvi N I, Howlett B J. PdeH, a high-affinity cAMP phosphodiesterase, is a Key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. PLoS Pathog, 2010, 6(5): e1000897.

[21] Hicks J K, Bahn Y S, Heitman J. Pde1 phosphodiesterase modulates cyclic AMP levels through a protein kinase A-mediated negative feedback loop in Cryptococcus neoformans. Eukaryot Cell, 2005, 4(12): 1971-1981.

[22] 吴彬.小麦赤霉菌 FGAC1 基因敲除及功能研究.呼和浩特:内蒙古师范大学,2011. Wu B. Characterization of FGAC1 Gene of Fusarium graminearum. Hohhot:Inner Mongolia Normal University, 2011.

[23] Balhadère P V, Talbot N J. PDE1 encodes aP-type ATPase involved in Appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 2001, 13(9): 1987-2004.

[1] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[2] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[3] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[4] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[5] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[6] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[7] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[8] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[9] 苏春晓,张晓玉,曾晗,陈压西,阮雄中,杨萍. 肝脏特异性CD36基因敲除小鼠的制备及鉴定 *[J]. 中国生物工程杂志, 2018, 38(8): 26-33.
[10] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.
[11] 刘宇帅,张杰,钟瑾,李晶,孟利强,张淑梅. 解淀粉芽孢杆菌TF28抗菌脂肽芬芥素的分离鉴定及抑菌作用 *[J]. 中国生物工程杂志, 2018, 38(10): 20-29.
[12] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[13] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[14] 张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.
[15] 杜红燕, 李天明, 刘金雷, 冯惠勇. 构建尿嘧啶磷酸核糖转移酶基因缺失菌株实现Gluconobacter suboxydans基因组无痕修饰[J]. 中国生物工程杂志, 2016, 36(7): 64-71.