Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (11): 100-106    DOI: 10.13523/j.cb.20141114
综述     
植物维生素E基因工程研究进展
柴玉琼1, 张玉红2, 韩凝1, 朱睦元1
1. 浙江大学生命科学学院 遗传学研究所 杭州 310058;
2. 西藏自治区农牧科学研究院 拉萨 850000
Progress in Genetic Engineering of Plant Vitamin E
CHAI Yu-qiong1, ZHANG Yu-hong2, HAN Ning1, ZHU Mu-yuan1
1. Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
2. Tibet Academy of Agricultural and Husbandry Science, Lhasa 850000, China
 全文: PDF(724 KB)   HTML
摘要:

维生素E(vitamin E, VE)是一类由光合生物合成的、人类饮食中必不可少的两种抗氧化物质,分为生育酚和生育三烯酚两大类。除了生育酚类物质所具有的抗氧化作用外,生育三烯酚还有很强的降胆固醇、预防糖尿病、促进骨吸收、抗癌和神经保护的作用,因此,VE被广泛应用于医药、食品、化妆品等行业中。本文主要综述了植物维生素E生物合成相关酶的研究进展以及利用基因工程手段提高植物维生素E活性的新策略。其中,多基因共转化、多基因操纵子及质体转化等方法为提高植物维生素E活性提供了新的思路。

关键词: 维生素E基因工程多基因操纵子质体转化    
Abstract:

Photosynthetic organisms synthesize the amphipathic antioxidant called vitamin E which are essential components of the human diet. Tocophero1 and tocotrieno1 comprise the vitamin E class in plants. Besides the antioxidant properties, the tocotrieno1 forms of natural vitamin E also help to lower cholesterol, prevent diabetes, promote bone resorption and reduce the risk of cancer and neurological diseases. Thus vitamin E is widely used in pharmaceutical, food and cosmetic industries. In this review, current knowledge on vitamin E biosynthesis pathway and related enzymes was described. Moreover, recent studies on genetic engineering to enhance and alter vitamin E content and composition in plants were summarized. Co-expression of multiple genes in vitamin E biosynthesis pathway and plastid transformation by using synthetic multigene operons have provided new strategies to increase vitamin E production in plants.

Key words: Vitamin E    Genetic engineering    Multigene operon    Plastid transformation
收稿日期: 2014-09-25 出版日期: 2014-11-25
ZTFLH:  Q78  
基金资助:

国家自然科学基金(31171543),国家大麦产业技术体系(CARS-05)资助项目

通讯作者: 韩凝,ninghan@zju.edu.cn     E-mail: ninghan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

柴玉琼, 张玉红, 韩凝, 朱睦元. 植物维生素E基因工程研究进展[J]. 中国生物工程杂志, 2014, 34(11): 100-106.

CHAI Yu-qiong, ZHANG Yu-hong, HAN Ning, ZHU Mu-yuan. Progress in Genetic Engineering of Plant Vitamin E. China Biotechnology, 2014, 34(11): 100-106.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141114        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I11/100


[1] Hofius D, Sonnewald U. Vitamin E biosynthesis: biochemistry meets cell biology. TRENDS in Plant Science, 2003, 8(1): 6-8.

[2] Zingg J M. Vitamin E: an overview of major research directions. Molecular Aspects of Medicine, 2007, 28(5-6): 400-422.

[3] Ros E. Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr, 2009, 89(5): 1649S-1656S.

[4] Zhang C X, Ho S C, Chen Y M, et al. Greater vegetable and fruit intake is associated with a lower risk of breast cancer among Chinese women. Int J Cancer, 2009, 125(1): 181-188.

[5] 黄筱生. 天然维生素E与人体健康. 中国油脂, 2003, 28(1):35-36. Huang X S. Natural vitamin E and health. China Oils and Fats, 2003, 28(1):35-36.

[6] Semchuk N M, Lushchak O V, Falk J, et al. Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiol Biochem, 2009, 47(5): 384-390.

[7] Foyer C H, Noctor G.. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 2005, 17(7):1866-1875.

[8] Falk J, Munne-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot, 2010, 61(6): 1549-1566.

[9] Sen C K, Khanna S, Roy S. Tocotrienols in health and disease: the other half of the natural vitamin E family. Mol Aspects Med, 2007, 28(5-6): 692-728.

[10] Aggarwal B B, Sundaram C, Prasad S, et al. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol, 2010, 80(11): 1613-1631.

[11] 张玉红, 巴桑玉珍, 寿建昕, 等. 不同基因型大麦品种大麦油及其母育酚含量的变异规律. 麦类作物学报, 2007, 27 (4): 721 -724. Zhang Y H, BaSang Y Z, Shou J X, et al. Variability of oil and tocol content in different barley cultivars. Journal of Triticeae Crops, 2007, 27 (4): 721 -724.

[12] Yang W, Cahoon R E, Hunter S C, et al. Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J, 2011, 65(2): 206-217.

[13] Hunter S C, Cahoon E B. Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids, 2007, 42(2): 97-108.

[14] 钱文成, 陶苏丹, 陈德富, 等. 植物维生素E代谢工程研究. 生物学通报, 2006, 41(12):13-15. Qian W C, Tao S D, Chen D F, et al. Progress of plant Vitamin E metabolic engineering. Bulletin of Biology, 2006, 41(12):13-15.

[15] Fitzpatrick T B, Basset G J, Borel P, et al. Vitamin deficiencies in humans: can plant science help?. Plant Cell, 2012, 24(2): 395-414.

[16] 胡英考. 植物维生素E合成及其生物技术改良. 中国生物工程杂志, 2004, 24(1):32-35. Hu Y K. Molecular biology and biotechnology improvement of vitamin E biosynthesis in plant. China Biotechnology, 2004, 24(1):32-35.

[17] Li Y, Zhou Y, Wang Z, et al. Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Science, 2010, 178(3): 312-320.

[18] Harish M C, Dachinamoorthy P, Balamurugan S, et al. Overexpression of homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) enhances α-tocopherol content in transgenic tobacco. Biologia Plantarum, 2012, 57(2): 395-400.

[19] Collakova E, Dellapenna D. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol, 2003, 131(2): 632-642.

[20] Lu Y, Rijzaani H, Karcher D, et al. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci U S A, 2013, 110(8): E623-632.

[21] Cahoon E B, Hall S E, Ripp K G, et al. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol, 2003, 21(9): 1082-1087.

[22] Kanwischer M, Porfirova S, Bergmuller E, et al. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol, 2005, 137(2): 713-723.

[23] Zhang C, Cahoon R E, Hunter S C, et al. Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production. Plant J, 2013, 73(4): 628-639.

[24] Rippert P, Scimemi C, Dubald M, et al. Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol, 2004, 134(1): 92-100.

[25] Farre G, Sudhakar D, Naqvi S, et al. Transgenic rice grains expressing a heterologous rho-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the gamma to the alpha isoform without increasing absolute tocopherol levels. Transgenic Res, 2012, 21(5): 1093-1097.

[26] Tavva V S, Kim Y H, Kagan I A, et al. Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Rep, 2007, 26(1): 61-70.

[27] Yusuf M A, Sarin N B. Antioxidant value addition in human diets: genetic transformation of Brassica juncea with gamma-TMT gene for increased alpha-tocopherol content. Transgenic Res, 2007, 16(1): 109-113.

[28] Karunanandaa B, Qi Q, Hao M, et al. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng, 2005, 7(5-6): 384-400.

[29] Falk J, Krauβ N, Dähnhardt D, et al. The senescence associated gene of barley encoding 4-hydroxyphenylpyruvate dioxygenase is expressed during oxidative stress. Journal of Plant Physiology, 2002, 159(11): 1245-1253.

[30] Tsegaye Y, K.Shintani D, DellaPenna D, et al. Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol. Biochem, 2002, 40: 913-920.

[31] Falk J, Brosch M, Schafer A, et al. Characterization of transplastomic tobacco plants with a plastid localized barley 4-hydroxyphenylpyruvate dioxygenase. J Plant Physiol, 2005, 162(7): 738-742.

[32] Kramer C M, Launis K L, Traber M G, et al. Vitamin E levels in soybean (Glycine max L. Merr.) expressing a p-hydroxyphenylpyruvate gene from oat (Avena sativa L.). J Agric Food Chem, 2014, 62(15): 3453-3457.

[33] Ren W, Zhao L, Zhang L, et al. Molecular cloning and characterization of 4-hydroxyphenylpyruvate dioxygenase gene from Lactuca sativa. J Plant Physiol, 2011, 168(10): 1076-1083.

[34] Collakova E, Dellapenna D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiology, 2001, 127(3): 1113-1124.

[35] Savidge B, Weiss J D, Wong Y H, et al. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol, 2002, 129(1): 321-332.

[36] Sattler S E. Vitamin E is essential for seed iongevity and for preventing lipid peroxidation during germination. The Plant Cell Online, 2004, 16(6): 1419-1432.

[37] Collakova E, Dellapenna D. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol, 2003, 133(2): 930-940.

[38] Van Eenennaam A L, Lincoln K, Durrett T P, et al. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell, 2003, 15(12): 3007-3019.

[39] Ischebeck T, Zbierzak A M, Kanwischer M, et al. A salvage pathway for phytol metabolism in Arabidopsis. Journal of Biological Chemistry, 2005, 281(5): 2470-2477.

[40] Valentin H E, Lincoln K, Moshiri F, et al. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell, 2006, 18(1): 212-224.

[41] 孙昱, 吴文忠, 李延志, 等. 一种天然维生素E微囊的制备及其性能表征. 大连工业大学学报, 2011, 30(6):400-403. Sun Y, Wu W Z, Li Y Z, et al. Microencapsulation and characterization of natural vitamin E. Journal of Dalian Polytechnic University, 2011, 30(6):400-403.

[42] 马云标, 朱科学, 周惠明. 维生素E微胶囊的理化性质表征. 中国油脂, 2010, 35(1):55-59. Ma Y B, Zhu K X, Zhou H M. Physicochemical characteristics of microencapsulated vitamin E. China Oils and Fats, 2010, 35(1):55-59.

[1] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[2] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[3] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[4] 马淑霞,张玲,闫晋飞,游松. 裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *[J]. 中国生物工程杂志, 2018, 38(9): 27-34.
[5] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[6] 陶宇,李高建,舒建洪,吴月红,杨芳,何玉龙. 猪支原体肺炎基因工程疫苗的研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 95-101.
[7] 石红璆,查代明,张炳火,李汉全. 全细胞脂肪酶研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 51-58.
[8] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[9] 郜娇娇, 杨树林. 基因工程技术优化透明质酸生产的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 72-77.
[10] 尹舒贤, 赵月华, 刘超, 吕占军, 王秀芳. 人源Alu RNA工程菌的构建和表达[J]. 中国生物工程杂志, 2017, 37(7): 88-96.
[11] 王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.
[12] 陈静, 康赐明, 罗文新. 治疗性抗体半衰期改造研究进展[J]. 中国生物工程杂志, 2017, 37(5): 87-96.
[13] 甘春杨, 刘亚, 罗英英, 张文露, 黄爱龙, 蔡雪飞, 胡接力. 一种适用于片段替换/插入突变扫描的克隆方法[J]. 中国生物工程杂志, 2016, 36(8): 55-63.
[14] 梅雪昂, 陈艳, 王瑞钊, 肖文海, 王颖, 李霞, 元英进. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72.
[15] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.