Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (9): 27-34    DOI: 10.13523/j.cb.20180904
研究报告     
裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *
马淑霞1,3,张玲2,闫晋飞1,**(),游松3
1 国家海洋局天津海水淡化与综合利用研究所 天津 300192
2 首都儿科研究所附属儿童医院 北京 100020
3 沈阳药科大学 沈阳 110016
Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.
Shu-xia MA1,3,Ling ZHANG2,Jin-fei YAN1,**(),Song YOU3
1 The Institute of Seawater Desalination and Comprehensive Utilization, Tianjin 300192, China
2 Children’s Hospital, Capital Institute of Pediatrics,Beijing 100020,China;
3 Shenyang Pharmaceutical University, Shenyang 110016, China
 全文: PDF(1563 KB)   HTML
摘要:

裂壶藻作为一种生产DHA的重要菌种,其脂肪酸合成途径除了已经被广泛了解的聚酮合酶(PKS)途径外,还残存着作为真核微生物中常见的脂肪酸合酶(FAS)途径中的功能酶和中间产物。经过前期的研究,运用基因工程手段,将载有与裂壶藻近缘藻种中已知的Δ12-desaturase表达模块和相关筛选标记构建入载体,通过电击转化导入Schizochytrium sp.ATCC20888中, 以期望修复裂壶藻中FAS途径的合成能力。通过分子水平检测确定目的功能基因已稳定转化后,再由气相色谱分析转化株油脂中相关脂肪酸含量分布情况。经过长期筛选验证,最终证明获得了两株阳性转化株,其生物量初步测定分别较野生株提高11.14%和4.12%,其油脂中DHA含量分别较野生株提高了19.50%及14.65%。

关键词: 基因工程脂肪酸合酶途径裂壶藻DHA    
Abstract:

As an excellent species for the production of DHA, Schizochytrium sp. has two distinct pathways for producing DHA, fatty acid synthase pathway and polyketide synthase pathway, of which fatty acid synthase pathway played limited role in the DHA synthesis process due to its low activity of one or more of the enzymes, resulted in its only responsible for some short chain fatty acid synthesis. In order to enhance the ability of fatty acid synthase pathway for producing DHA in Schizochytrium sp. to improve the DHA content of its oil, the exogenous △12-desaturase expression plasmid with screening markers for Schizochytrium sp.ATCC20888 from the brown algae was constructed, then Schizochytrium sp. were transformed through electroporation. After long-term screening, two positive transformants were obtained by DNA and RNA identification. Their initial biomass measurements were 11.14% and 4.12% higher than the wild strains while the DHA content in oils and fats were 19.50% and 14.65% higher than the wild strains.

Key words: Genetic engineering    Fatty acid synthase pathway    Schizochytrium sp.    DHA
收稿日期: 2018-04-09 出版日期: 2018-10-12
基金资助: * 2015年中央级公益性科研院所基本科研业务费专项资金(K-JBYWF-2015-T19)
通讯作者: 闫晋飞     E-mail: jinfei_yan@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马淑霞
张玲
闫晋飞
游松

引用本文:

马淑霞,张玲,闫晋飞,游松. 裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *[J]. 中国生物工程杂志, 2018, 38(9): 27-34.

Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.. China Biotechnology, 2018, 38(9): 27-34.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180904        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I9/27

图1  表达载体pBlu2SKP-Pht△12
图2  质粒pBlu2SKP-Pht△12-1的构建
图3  质粒pBlu2SKP-Pht△12-2的构建
图4  质粒pBlu2SKP-Pht△12的构建
图5  抗性筛选实验结果
图6  DNA水平筛选转化株
图7  转化株的RT-PCR结果
生物量干重g/L
组一 组二 组三 平均重量
转化株1 8.13 7.97 7.93 8.01
转化株2 7.28 7.32 7.87 7.49
野生株 7.12 7.18 7.28 7.19
表1  野生株及转化株的生物量比较
图8  转化株与野生株的气相色谱图
油脂成分 转化株1(%) 转化株2(%) 野生株(%)
棕榈酸(C16:0) 22.027 20 19.789 47 26.702 99
硬脂酸(C18:0) 0.821 23 0.905 67 1.131 69
反油酸(C18:1(9)) 0.376 45 0.4312 7 0.747 75
亚油酸(C18:2(9,12)) 1.363 18 1.782 81 0.818 34
α-亚麻酸(C18:3n3) 0.113 95 0.121 57 0.1058 9
EPA (C20:5n3) 0.418 27 0.338 02 0.449 7
DHA(C22:6(DHA)) 44.340 88 42.540 43 37.104 51
表2  转化株与野生株部分脂肪酸在其油脂中的百分含量
图9  合成多不饱和脂肪酸的FAS途径[5]
[1] 曹万新, 孟橘, 田玉霞 . DHA的生理功能及应用研究进展. 中国油脂, 2011,36(3):1-4.
Cao W X, Meng J, Tian Y X . Research advance in application and physiological functions of DHA. China Oils and Fats, 2011,36(3):1-4.
[2] 陈殊贤, 郑晓辉 . 微藻油和鱼油中DHA的特性及应用研究进展. 食品科学, 2013,34(21):439-444.
Chen S X, Zheng X H . Research progress in characteristics and applications of DHA in microalga oil and fish oil. Food Science, 2013,34(21):439-444.
[3] Ashford A, Barclay W R, Weaver C A , et al. Electron microscopy may reveal structure of docosahexaenoic acid-rich oil with in Schizochytrium sp. Lipids, 2000,35(12):1377-1386.
doi: 10.1007/s11745-000-0655-2
[4] Qiu X . Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins Leukot Essent Fatty Acids, 2003,68(2):181-186.
doi: 10.1016/S0952-3278(02)00268-5
[5] Ratledge C . Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 2004,86(11):807-815.
doi: 10.1016/j.biochi.2004.09.017
[6] Hauvermale A, Kuner J, Rosenzweig B D , et al. Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids, 2006,41(8):739-747.
doi: 10.1007/s11745-006-5025-6
[7] Metz J G, Roessler P, Facciotti D , et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 2001,293(5528):290-300.
doi: 10.1126/science.1059593
[8] Lippmeier J C, Crawford K S, Owen C B , et al. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids, 2009,44(7):621-630.
doi: 10.1007/s11745-009-3311-9
[9] Song X, Tan Y, Liu Y , et al. Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116. Journal of Agricultural & Food Chemistry, 2013,61(41):9876-9881.
[10] Nagano N, Sakaguchi K, Taoka Y , et al. Detection of genes involved in fatty acid elongation and desaturation in thraustochytrid marine eukaryotes. Journal of Oleo Science, 2011,60(9):475-481.
doi: 10.5650/jos.60.475
[11] Re L, Zhuang X, Chen S , et al. Introduction of ω-3 desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp. Journal of Agricultural & Food Chemistry, 2015,63(44):9770-9776.
[12] 闫晋飞, 杨玉莹, 马淑霞 . 微藻基因工程概述. 生物学通报, 2017,52(4):1-5.
Yan J F, Yang Y Y, Ma S X . Overview of microalgae gene engineering. Bulletin of Biology, 2017,52(4):1-5.
[13] Yan J, Cheng R, Lin X , et al. Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Applied Microbiology & Biotechnology, 2013,97(5):1933-1939.
[14] Bligh E G, Dyer W J . A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry & Physiology, 1959,37(8):911-917.
[1] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[2] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[3] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[4] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[5] 陶宇,李高建,舒建洪,吴月红,杨芳,何玉龙. 猪支原体肺炎基因工程疫苗的研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 95-101.
[6] 石红璆,查代明,张炳火,李汉全. 全细胞脂肪酶研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 51-58.
[7] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[8] 郜娇娇, 杨树林. 基因工程技术优化透明质酸生产的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 72-77.
[9] 尹舒贤, 赵月华, 刘超, 吕占军, 王秀芳. 人源Alu RNA工程菌的构建和表达[J]. 中国生物工程杂志, 2017, 37(7): 88-96.
[10] 王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.
[11] 陈静, 康赐明, 罗文新. 治疗性抗体半衰期改造研究进展[J]. 中国生物工程杂志, 2017, 37(5): 87-96.
[12] 甘春杨, 刘亚, 罗英英, 张文露, 黄爱龙, 蔡雪飞, 胡接力. 一种适用于片段替换/插入突变扫描的克隆方法[J]. 中国生物工程杂志, 2016, 36(8): 55-63.
[13] 梅雪昂, 陈艳, 王瑞钊, 肖文海, 王颖, 李霞, 元英进. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72.
[14] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[15] 方世雄, 马义, 沈淑桃, 赵绍军, 洪岸. 基因重组TNFα衍生物TRSP10的高效制备及其对DU145细胞抑制作用研究[J]. 中国生物工程杂志, 2015, 35(4): 11-16.