Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (8): 64-72    DOI: 10.13523/j.cb.20160809
技术与方法     
产玉米黄质的人工酵母细胞的构建
梅雪昂1, 陈艳1, 王瑞钊1, 肖文海1,2, 王颖1,2, 李霞1,2, 元英进1,2
1. 天津大学化工学院制药工程系 系统生物工程教育部重点实验室 天津 300072;
2. 天津化学化工协同创新中心合成生物学平台 天津 300072
Engineered Yeast Cell for Producing Zeaxanthin
MEI Xue-ang1, CHEN Yan1, WANG Rui-zhao1, XIAO Wen-hai1,2, WANG Ying1,2, LI Xia1,2, YUAN Ying-jin1,2
1. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;
2. SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin 300072, China
 全文: PDF(1120 KB)   HTML
摘要:

为了实现微生物异源合成天然类胡萝卜素玉米黄质,以一株产β-胡萝卜素的酿酒酵母为底盘细胞,利用合成生物学技术构建人工酵母细胞。通过在染色体整合玉米黄质生物合成关键酶-β-胡萝卜素羟化酶(CrtZ),并对其9种来源进行筛选,发现整合欧文氏菌来源的β-胡萝卜素羟化酶的菌株获得玉米黄质的最高产量。法尼基焦磷酸(FPP)作为合成萜烯类天然产物的重要前体,通过敲除 Lpp1Dpp1 基因,削减法尼基焦磷酸向法呢醇的转化,为玉米黄质的合成提供更多的前体,使玉米黄质的产量提高了1.27倍(从29 mg/L提高到36.8 mg/L)。在此基础上,通过增加欧文氏菌来源CrtZ的基因拷贝数及调节其启动子的强弱来增强β-胡萝卜素羟化酶的表达强度,使得玉米黄质的摇瓶产量达到96.2 mg/L,是目前公开报道中产量最高的。

关键词: 玉米黄质酿酒酵母合成生物学基因工程    
Abstract:

For heterologous synthesize natural carotenoid zeaxanthin in microorganism,a β-carotene producing Saccharomyces cerevisiae was chozen as the host cell to construct engineered yeast with synthetic biology method. The key enzymes β-carotene hydroxylase encoding gene CrtZ from nine sources were integrated in the chromosomal, separately. As the result, the strain carrying CrtZ from Erwinia uredovora achieved the highest titer of zeaxanthin. Moreover, the conversion from farnesyl pyrophosphate (an important precursor for terpenoid natural products) to farnesol was reduced by knocking out gene Lpp1 and Dpp1, providing more precursors for zeaxanthin synthesis. The zeaxanthin yield increased 1.27 fold (from 29 mg/L to 36.8 mg/L) accordingly. Furthermore, a titer of zeaxanthin was achieved as 96.2 mg/L in shake-flask through increasing the CrtZ gene copy number and regulating its promoter's activity,which is the highest reported microbial titer known.

Key words: Synthetic biology    Zeaxanthin    Gene engineering    Saccharomyces cerevisiae
收稿日期: 2016-01-13 出版日期: 2016-03-16
ZTFLH:  Q789  
基金资助:

国家高技术研究发展计划资助项目(2012AA02A701)

通讯作者: 李霞     E-mail: lixia01@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梅雪昂
陈艳
王瑞钊
肖文海
王颖
李霞
元英进

引用本文:

梅雪昂, 陈艳, 王瑞钊, 肖文海, 王颖, 李霞, 元英进. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72.

MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin. China Biotechnology, 2016, 36(8): 64-72.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160809        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I8/64

[1] Ding M Z, Yan H F, Li L F, et al. Biosynthesis of taxadiene in Saccharomyces cerevisiae:selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PloS One, 2014, 9(10):e109348.
[2] Du H X, Xiao W H, Wang Y, et al. Engineering Yarrowia lipolytica for campesterol overproduction. PloS One, 2016, 11(1):e0146773.
[3] Lian J, Si T, Nair N U, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metabolic Engineering, 2014, 24:139-149.
[4] Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000):70-74.
[5] Sajilata M G, Singhal R S, Kamat M Y. The carotenoid pigment zeaxanthin-a review. Comprehensive Reviews in Food Science and Food Safety, 2008, 7(1):29-49.
[6] Nishino H, Murakoshi M, Tokuda H, et al. Cancer prevention by carotenoids. Archives of Biochemistry and Biophysics, 2009, 483(2):165-168.
[7] Moeller S M, Jacques P F, Blumberg J B. The potential role of dietary xanthophylls in cataract and age-related macular degeneration. Journal of the American College of Nutrition, 2000, 19(5):522-527.
[8] Li X R, Tian G Q, Shen H J, et al. Metabolic engineering of Escherichia coli to produce zeaxanthin. Journal of Industrial Microbiology & Biotechnology, 2015, 42(4):627-636.
[9] Beuttler H, Hoffmann J, Jeske M, et al. Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. Applied Microbiology and Biotechnology, 2011, 89(4):1137-1147.
[10] Sun J, Shao Z Y, Zhao H M, et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2012,109(8):2082-2092.
[11] Liang J, Ning J C, Zhao H M. Coordinated induction of multi-gene pathways in Saccharomyces cerevisiae. Nucleic Acids Research,2013,41(4):1-10.
[12] Gietz R D, Schiestl R H. Transforming yeast with DNA. Methods in Molecular and Cellular Biology, 1995, 5(5):255-269.
[13] Scaife M A, Ma C A, Ninlayarn T, et al. Comparative analysis of β-carotene hydroxylase genes for astaxanthin biosynthesis. Journal of Natural Products, 2012, 75(6):1117-1124.
[14] Fraser P D, Miura Y, Misawa N. In vitro characterization of astaxanthin biosynthetic enzymes. Journal of Biological Chemistry, 1997, 272(10):6128-6135.
[15] Westfall P J, Pitera D J, Lenihan J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences, 2012, 109(3):e111-e118.
[16] Faulkner A, Chen X, Rush J, et al. The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274(21):14831-14837.
[17] Takahashi S, Yeo Y, Greenhagen B T, et al. Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnology and Bioengineering, 2007, 97(1):170-181.
[18] Xie W P, Ye L D, Lv X M, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metabolic Engineering,2015,28:8-18.
[19] Farhi M, Marhevka E, Masci T, et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic Engineering, 2011, 13(5):474-481.
[20] Zhang L, Gong Y F, Liu X D, et al. Cloning and expression analysis of β-carotene hydroxylase gene(chyb) from Dunaliella salina. Journal of Agricultural Biotechnology, 2013, 21(8):920-930.
[21] Liu D, Du J, Zhao G R, et al. Applications of synthetic biology in medicine and energy. CIESC J, 2011, 62(9):2391-2397.
[22] Hammer K, Mijakovic I, Jensen P R. Synthetic promoter libraries-tuning of gene expression. Trends in Biotechnology, 2006, 24(2):53-55.
[23] Siegl T, Tokovenko B, Myronovskyi M, et al. Design construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metabolic Engineering, 2013,19:98-106.
[24] Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446):528-532.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[6] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[7] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[8] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[9] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[10] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[11] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[12] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[13] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[14] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[15] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.