Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (8): 72-77    DOI: 10.13523/j.cb.20170811
综述     
基因工程技术优化透明质酸生产的研究进展
郜娇娇, 杨树林
南京理工大学 南京 210094
Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology
GAO Jiao-jiao, YANG Shu-lin
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(422 KB)   HTML
摘要: 透明质酸是由葡萄糖醛酸和N-乙酰葡萄糖胺组成的双糖单位聚合而成的直链酸性粘多糖,在医药、化妆品、食品等领域拥有庞大的市场。传统研究通过优化发酵参数改善透明质酸的生产虽然取得了显著成效,但也趋于上限,加之天然生产菌株固有的发酵培养基成本高、具有一定致病性等等的劣势也日益显著。随着分子生物学技术的迅速发展以及对透明质酸合成相关基因研究的不断深入,研究重点逐渐转向利用基因工程技术构建高产、安全、具有特定分子量的透明质酸工程菌株。以下就有关透明质酸生产菌株基因工程改造的策略及研究进展进行概述和展望。
关键词: 基因工程透明质酸多糖分子量    
Abstract: Hyaluronic acid is a linear acid mucopolysaccharide composed of repeating disaccharide glucuronic acid and N-acetyl-glucosamine units, which is widely used in medicine, cosmetics, food and other fields. Traditional studies have made significant achievements in improving the production of hyaluronic acid by optimizing the fermentation parameters, but have reached the upper limit, and the natural strains have the increasing disadvantages of high cost of fermentation medium and pathogenicity. With the rapid development of molecular biology technology and the continuous research on the genes related to hyaluronic acid synthesis, the research focus has gradually shifted to the use of genetic engineering technology to construct high yield, safe and specific molecular weight hyaluronan genetically engineered strains. Here the strategies and research progress of genetic engineering for the production of hyaluronic acid were reviewed.
Key words: Genetic engineering    Hyaluronic acid    Polysaccharide    Molecular weight
收稿日期: 2017-05-05 出版日期: 2017-08-25
ZTFLH:  TQ281  
基金资助: 国家"863"计划资助项目(2014AA022107)
通讯作者: 杨树林     E-mail: yshulin@njust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郜娇娇
杨树林

引用本文:

郜娇娇, 杨树林. 基因工程技术优化透明质酸生产的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 72-77.

GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology. China Biotechnology, 2017, 37(8): 72-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170811        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I8/72

[1] Vigetti D, Karousou E, Viola M, et al. Hyaluronan:biosynthesis and signaling. Biochim Biophys Acta, 2014, 1840(8):2452-2459.
[2] Viola M, Vigetti D, Karousou E, et al. Biology and biotechnology of hyaluronan. Glycoconjugate Journal, 2015, 32(3):93-103.
[3] Anderegg U, Simon J C, Averbeck M. More than just a filler——the role of hyaluronan for skin homeostasis. Exp Dermatol, 2014, 23(5):295-303.
[4] Ammar T Y, Pereira T A, Mistura S L, et al. Viscosupplementation for treating knee osteoarthrosis:review of the literature. Rev Bras Ortop, 2015, 50(5):489-494.
[5] Mencucci R, Boccalini C, Caputo R, et al. Effect of a hyaluronic acid and carboxymethylcellulose ophthalmic solution on ocular comfort and tear-film instability after cataract surgery. J Cataract Refract Surg, 2015, 41(8):1699-1704.
[6] Nesti L J, Li W J, Shanti R M, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A, 2008, 14(9):1527-1537.
[7] Robert L. Hyaluronan, a truly "youthful" polysaccharide. Its medical applications. Pathologie Biologie, 2015, 63(1):32-34.
[8] Ghosh S, Hoselton S A, Dorsam G P, et al. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology, 2015, 220(5):575-588.
[9] De Oliveira J D, Carvalho L S, Gomes A M, et al. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact, 2016, 15(1):119.
[10] Blank L M, Hugenholtz P, Nielsen L K. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci. J Mol Evol, 2008, 67(1):13-22.
[11] Marcellin E, Steen J A, Nielsen L K. Insight into hyaluronic acid molecular weight control. Appl Microbiol Biotechnol, 2014, 98(16):6947-6956.
[12] Sheng J Z, Ling P X, Zhu X Q, et al. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis:a case study of the regulation mechanism of hyaluronic acid polymer. J Appl Microbiol, 2009, 107(1):136-144.
[13] Aya K L, Stern R, Chen W Y. Hyaluronan in wound healing:rediscovering a major player.Wound Repair Regen, 2014, 22(5):579-593.
[14] Yuan P, Lv M, Jin P, et al. Enzymatic production of specifically distributed hyaluronan oligosaccharides. Carbohydr Polym, 2015, 129:194-200.
[15] Chen W Y, Marcellin E, Hung J, et al. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J Biol Chem, 2009, 284(27):18007-18014.
[16] Marcellin E, Nielsen L K, Abeydeera P, et al. Quantitative analysis of intracellular sugar phosphates and sugar nucleotides in encapsulated streptococci using HPAEC-PAD. Biotechnol J, 2009, 4(1):58-63.
[17] Tlapak-Simmons V L, Baggenstoss B A, Kumari K, et al. Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. J Bio Chem, 1999, 274(7):4246-4253.
[18] Marcellin E, Chen W Y, Nielsen L K. Understanding plasmid effect on hyaluronic acid molecular weight produced by Streptococcus equi subsp. zooepidemicus. Metabolic Engineering, 2010, 12(1):62-69.
[19] Chen W Y, Marcellin E, Steen J A, et al. The role of hyaluronic acid precursor concentrations in molecular weight control in Streptococcus zooepidemicus. Mol Biotechnol, 2014, 56(2):147-156.
[20] Hmar R V, Prasad S B, Jayaraman G, et al. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis. Biotechnol J, 2014, 9(12):1554-1564.
[21] Swaminathan J, Ramachandran K B. Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochemical Engineering Journal, 2010, 48(2):148-158.
[22] Jokela T A, Jauhiainen M, Auriola S, et al. Mannose inhibits hyaluronan synthesis by down-regulation of the cellular pool of UDP-N-acetylhexosamines. J Biol Chem, 2008, 283(12):7666-7673.
[23] Badle S S, Jayaraman G, Ramachandran K B. Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis. Bioresour Technol, 2014, 163:222-227.
[24] Kumari K, Weigel P H. Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from Group C Streptococcus equisimilis. J Biol Chem, 1997, 272(51):32539-32546.
[25] Jia Y N, Zhu J, Chen X F, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol, 2013, 132:427-431.
[26] Zhang L, Huang H, Wang H, et al. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol Lett, 2016, 38(12):2103-2108.
[27] Medina A P, Lin J L, Weigel P H. Hyaluronan synthase mediates dye translocation across liposomal membranes. BMC Biochemistry, 2012, 13(2):1-9.
[28] Weigel P H, Baggenstoss B A. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology, 2012, 22(10):1302-1310.
[29] Jeong E, Shim W Y, Kim J H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol, 2014, 185:28-36.
[30] Jin P, Kang Z, Yuan P, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng, 2016, 35:21-30.
[31] DeAngelis P L, Oatman L C, Gay D F. Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. J Biol Chem, 2003, 278(37):35199-35203.
[32] Boltje T J, Buskas T, Boons G J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat Chem, 2009, 1(8):611-622.
[33] Chien L J, Lee C K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Prog, 2007, 23(5):1017-1022.
[34] Prasad S B, Jayaraman G, Ramachandran K B. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis. Appl Microbiol Biotechnol, 2010, 86(1):273-283.
[35] Widner B, Behr R, Von Dollen S, et al. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol, 2005, 71(7):3747-3752.
[36] Izawa N, Serata M, Sone T, et al. Hyaluronic acid production by recombinant Streptococcus thermophilus. J Biosci Bioeng, 2011, 111(6):665-670.
[37] 张晋宇. 表达phbCAB基因对兽疫链球菌中乳酸及透明质酸产量的影响. 北京:清华大学生命科学与技术系, 2005. Zhang J Y. Effect of expressing PHB synthesis genes phbCAB gene on production of latate and hyaluronic acid by Streptococcus zooepidemicus. Beijing:Tsinghua University, Department of life science and technology, 2005.
[38] Wu X M, Gao H J, Tian G, et al. Transformation of Streptococcus zooepidemicus with genes responsible for polyhydroxybutrate synthesis. Tsinghua Science and Technology, 2002, 7(4):387-392.
[39] Chong B F, Nielsen L K. Amplifying the cellular reduction potential of Streptococcus zooepidemicus. J Biotechnol, 2003, 100(1):33-41.
[40] Kaur M, Jayaraman G. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab Eng Commun, 2016, 3:15-23.
[41] Ma Z, Geng J, Yi L, et al. Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246. BMC Genomics, 2013, 14:377.
[42] 刘玉川, 李宇兴, 赖永勤,等. 透明质酸生产菌溶血素S基因缺失突变菌株的构建及其特性. 微生物学报, 2016, 56(11):1755-1765. Liu Y C, Li Y X, Lai Y Q, et al. Construction and characterization of hemolysin S gene mutant strain producing hyaluronic acid. Acta Microbiologica Sinica, 2016, 56(11):1755-1765.
[43] Prasad S B, Ramachandran K B, Jayaraman G. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis. Appl Microbiol Biotechnol, 2012, 94(6):1593-1607.
[44] Yu H, Stephanopoulos G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng, 2008, 10(1):24-32.
[45] Deangelist P L, Achyuthan A M. Yeast-derived recombinant DG42 protein of Xenopus can synthesize hyaluronan in vitro. J Biol Chem, 1996, 271(39):23657-23660.
[46] Cheng F, Gong Q, Yu H, et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol J, 2016, 11(4):574-584.
[47] Sze J H, Brownlie J C, Love C A. Biotechnological production of hyaluronic acid:a mini review. Biotech, 2016, 6(1):67.
[48] Jin P, Zhang L, Yuan P, et al. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym, 2016, 140:424-432.
[49] Tlustá M, Krahulec J, Pepeliaev S. Production of hyaluronic acid by mutant strains of group C Streptococcus. Mol Biotechnol, 2013, 54(3):747-755.
[1] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[2] 陈玉琼,谭文华,刘海峰,陈根. miR-29a通过调控PTEN表达对脂多糖诱导人肺微血管内皮细胞损伤的保护作用研究*[J]. 中国生物工程杂志, 2021, 41(5): 8-16.
[3] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[4] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[5] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[6] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[7] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[8] 胡富,李谦,朱本伟,宁利敏,姚忠,孙芸,杜昱光. 石莼多糖裂解酶的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 104-113.
[9] 马淑霞,张玲,闫晋飞,游松. 裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *[J]. 中国生物工程杂志, 2018, 38(9): 27-34.
[10] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[11] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.
[12] 陶宇,李高建,舒建洪,吴月红,杨芳,何玉龙. 猪支原体肺炎基因工程疫苗的研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 95-101.
[13] 石红璆,查代明,张炳火,李汉全. 全细胞脂肪酶研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 51-58.
[14] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[15] 冯源, 唐云, 徐蕾, 谭海刚. 海藻多糖通过下调肝癌细胞Hep3B糖酵解途径抑制细胞增殖和迁移[J]. 中国生物工程杂志, 2017, 37(9): 31-40.