Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (1): 78-87    DOI: 10.13523/j.cb.20180110
作物雄性不育与杂种优势利用专辑     
利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系
吴锁伟1,2,万向元1,2()
1 北京科技大学生物前沿技术与应用研究中心 化学与生物工程学院 生物农业研究院 北京 100024
2 北京首佳利华科技有限公司 主要作物生物育种北京市工程实验室 生物育种北京市国际科技合作基地 北京 100192
Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production
Suo-wei WU1,2,Xiang-yuan WAN1,2()
1 Advanced Biotechnology and Application Research Center, Institute of Biology and Agriculture, School of Chemistry and Biological Engineering,University of Science and Technology Beijing, Beijing 100024, China
2 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
 全文: PDF(2014 KB)   HTML
摘要:

雄性不育技术在作物杂种优势利用和杂交种生产中发挥着重要作用。基于核质互作雄性不育的“三系法”与光温敏核不育的“两系法”已经在水稻等主要作物的杂交制种中获得了广泛应用,但是存在着资源利用效率低、育性不稳定、易受外界环境影响等诸多问题。近三十年来,利用生物技术创建不同类型的植物雄性不育系取得了一系列突破性进展。主要针对玉米、水稻、小麦三大作物的基因工程雄性不育技术的最新进展进行总结,特别详细地描述了本实验室最近研究创制的玉米多控不育技术体系,以期为相关研究和产业化应用提供技术参考。

关键词: 雄性不育基因工程杂种优势玉米水稻小麦    
Abstract:

Male sterility plays an important role in hybrid vigor utilization and hybrid seed production in crops. The three-line system and two-line system based on cytoplasmic male sterility and photo-thermo sensitive male sterility had been widely used in crop hybrid seed production. But there are some limitations such as low efficiency of germplasm utilization, unstable fertility in variable environmental condition. In the last three decades, many artificial manipulations of male sterility in plants have been accomplished by using genetic engineering or biotechnology strategies. The reported approaches used for generating artificial biotechnology male-sterile lines in the main three crops such as maize, rice and wheat are outlined. Especially, detail the multi-control sterility (MCS) system in maize designed by our laboratory recently is described. This will give some insights on the commercial application of male sterility in crop breeding and hybrid seed production.

Key words: Male sterility    Genetic engineering    Hybrid vigor    Maize    Rice    Wheat
收稿日期: 2017-11-30 出版日期: 2018-01-31
ZTFLH:  Q785  
基金资助: 国家自然科学基金项目(31771875);国家重点研发计划项目(2017YFD0102001, 2017YFD0101200);国家国际科技合作项目(2015DFA30640);国家科技支撑计划项目(2014BAD01B02);中央高校基本科研业务费专项资金(06500060);国家“万人计划”科技创新领军人才特殊支持经费;北京市科技计划资助项目(Z161100000916013)
作者简介: 通讯作者 万向元,电子信箱: wanxiangyuan@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴锁伟
万向元

引用本文:

吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.

Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production. China Biotechnology, 2018, 38(1): 78-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180110        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I1/78

图1  玉米多控不育技术体系的整体技术路线
No.Gene nameCoded proteinsReferences
1ms1, male sterility1LOB/LBD protein 30[10]
2ms7, male sterility7PHD-finger protein[2, 11]
3ms30, male sterility30GDSL-Lipase[12]
4ms33, male sterility33GPAT protein[13]
表1  本实验室为创建玉米多控不育技术体系所克隆的玉米隐性核不育基因
ConstructsPromoter-gene combinationReferences
pMCS0101p35S∷Bar//pZmMs1:ZmMs1//pZm13∷Dam//pPG47∷Bt1:ZmAA//pLTP2∷mCherry[14]
pMCS0102p35S∷Bar//pPG47∷Bt1:ZmAA//pZmMs1∷ZmMs1//pLTP2∷DsRed2[14]
pMCS0701p35S∷Bar//pZmMs7:ZmMs7//pZm13∷Dam//pPG47∷Bt1:ZmAA//pLTP2∷mCherry[15]
pMCS0702p35S∷Bar//pPG47∷Bt1:ZmAA//pZmMs7∷ZmMs7//pLTP2∷DsRed2[15]
pMCS0703p35S∷Bar//pPG47∷Bt1:ZmAA//pZm13∷Dam//pZmMs7∷ZmMs7//pLTP2∷DsRed2[15]
pMCS3001p35S∷Bar//pZmMs30:ZmMs30//pZm13∷Dam//pPG47∷Bt1:ZmAA//pLTP2∷mCherry[16]
pMCS3002p35S∷Bar//pPG47∷Bt1:ZmAA//pZmMs30∷ZmMs30//pLTP2∷DsRed2[16]
pMCS3003p35S∷Bar//pPG47∷Bt1:ZmAA//pZm13∷Dam//pZmMs30∷ZmMs30//pLTP2∷DsRed2[16]
pMCS3301p35S∷Bar//pZmMs33:ZmMs33//pZm13∷Dam//pLTP2∷mCherry
pMCS3302p35S∷Bar//pPG47∷Bt1:ZmAA//pZm13∷Dam//pZmMs33∷ZmMs33//pLTP2∷DsRed2
表2  本实验室为创建玉米多控不育保持系所构建的遗传转化商业化载体
图2  三个基于Ms7基因和ms7突变体的玉米多控不育转基因保持系表型[2]
图3  三个水稻智能不育保持系的穗部表型
图4  利用小麦断裂基因不育技术进行杂交小麦育种和制种的技术路线[8]
图5  玉米MCS和SPT技术的整体生产流程
[1] Shukla P, Singh N K, Gautam R, et al. Molecular approaches for manipulating male sterility and strategies for fertility restoration in plants. Mol Biotechnol, 2017,59(9-10): 445-457.
doi: 10.1007/s12033-017-0027-6
[2] Zhang D F, Wu S W, An X L, et al. Construction of a multi-control sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J. [2017-11-30]. .
[3] Wu Y, Fox T W, Trimnell M R, et al.Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2016, 14(3): 1046-1054.
doi: 10.1111/pbi.12477 pmid: 26442654
[4] Fox T, DeBruin J, Haug Collet K, et al. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15(8): 942-952.
doi: 10.1111/pbi.12689 pmid: 28055137
[5] Chang Z, Chen Z, Wang N, et al.Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proceedings of the National Academy of Sciences, 2016, 113(49): 14145-14150.
doi: 10.1073/pnas.1613792113 pmid: 27864513
[6] Feng P C, Qi Y, Chiu T, et al.Improving hybrid seed production in corn with glyphosate-mediated male sterility. Pest Manag Sci, 2014, 70(2): 212-218.
doi: 10.1002/ps.3526 pmid: 23460547
[7] Rao G S, Tyagi A K, Rao K V.Development of an inducible male-sterility system in rice through pollen-specific expression of l-ornithinase (argE) gene of E. coli. Plant Sci, 2017, 256: 139-147.
doi: 10.1016/j.plantsci.2016.12.001 pmid: 28167027
[8] Kempe K, Rubtsova M, Gils M.Split-gene system for hybrid wheat seed production. Proc Natl Acad Sci USA, 2014, 111(25): 9097-9102.
doi: 10.1073/pnas.1402836111 pmid: 24821800
[9] Kempe K, Rubtsova M, Riewe D, et al.The production of male-sterile wheat plants through split barnase expression is promoted by the insertion of introns and flexible peptide linkers. Transgenic Res, 2013, 22(6): 1089-1105.
doi: 10.1007/s11248-013-9714-7 pmid: 23720222
[10] 万向元,吴锁伟,周岩,等. 植物花粉发育调控基因Ms1及其编码蛋白: 中国, ZL201410381072.5, 2017-09-05.[2017-08-19]. .
Wan X Y, Wu S W, Zhou Y, et al.The DNA Sequence and the Coded Orotein of Ms1 Gene Which Controls the Male Fertility of Plants. China, ZL201410381072.5,2017-09-05.[2017-08-19]. .
[11] 万向元,吴锁伟,谢科,等. 一种控制玉米雄性生育力的ZmMs7基因序列及其编码蛋白,中国,ZL201410338212.0, 2017-09-05.[2017-08-19].
Wan X Y, Wu S W, Xie K, et al.The DNA Sequence and the Coded Protein of ZmMs7 Gene Which Controls the Male Fertility of Maize. China, ZL201410338212.0,2017-09-05.[2017-08-19]. .
[12] 万向元,吴锁伟,周岩,等.一种玉米花粉减数分裂后发育调控基因Ms30的DNA 序列及其编码蛋白,中国,ZL201410703778.9, 2017-04-12.[2017-08-19]. .
Wan X Y, Wu S W, Xie K, et al.The DNA Sequence and the Coded Protein of a Pollen Post-meiotic Developmental Gene Ms30 in Maize. China, ZL201410703778.9, 2017-04-12.[2017-08-19]. .
[13] 万向元,吴锁伟,张丹凤,等.玉米花粉发育调控基因Ms33的DNA 序列及其编码蛋白,中国,CN201610880590.0, 2017-02-15.[2017-08-19]. .
Wan X Y, Wu S W, Zhang D F, et al.The DNA Sequence and the Coded Protein of a Pollen Developmental Gene Ms33 in Maize. China, CN201610880590.0,2017-02-15. [2017-08-19]. .
[14] 万向元,吴锁伟,谢科,等. 基于Ms1基因构建的介导玉米雄性生育力的多控不育载体及其应用,中国,ZL201510298173.0, 201702-27.[2017-08-19]..
Wan X Y,Wu S W,Xie K, et al.The Multi-control Male Sterility Constructs Based on Ms1 Gene and Their Application. China, ZL201510298173.0, 2017-02-27.[2017-08-19]. .
[15] 万向元,谢科,吴锁伟,等. 一种基于Ms7基因构建的多控不育表达载体及其用于保持和繁殖玉米隐性核不育系的方法,中国,ZL201510301333.2, 2017-03-08.[2017-08-19]. .
Wan X Y, Xie K, Wu S W, et al.The Multi-control Male Sterility Constructs Based on Ms7 Gene and Their Application in Maintaining and Producing Maize Recessive Genic Male Sterility Lines. China, ZL201510301333.2, 2017-03-08.[2017-08-19]. .
[16] 万向元,吴锁伟,谢科,等. 一种基于Ms30基因建立的玉米雄性不育系保持和繁殖的方法,中国,ZL201510300778.9, 2017-02-22.[2017-08-19]. .
Wan X Y, Xie K, Wu S W, et al.The methods of maintaining and producing maize recessive genic male sterility lines based on Ms30 gene. China, ZL201510300778.9, 2017-02-22.[2017-08-19]. .
[17] USDA-APHIS.Pioneer Hi-Bred International, Inc. Seed Production Technology (SPT) Process OECD Unique Identifier: DP-3213-1 Corn: Final Environmental Assessment. Riverdale, MD: United States Department of Agriculture Animal and Plant Health Inspection Service. [2017-11-15]. 2011.
[18] FSANZ. New Plant Breeding Techniques. Report of a Workshop hosted by Food Standards Australia New Zealand (FSANZ). [2017-11-15].. 2012.
[19] Japan-MHLW, The outcome of the discussion on F1 hybrid seeds produced with the DuPont’s Seed Production Technology (SPT) using DP-1. Japan Ministry of Health, Labor, and Welfare. [2017-11-15].. 2013.
[20] 王玉峰, 黄霁月, 杨金水. 基因工程培育可恢复的植物雄性不育系的研究进展. 遗传, 2011, 33(1): 40-47.
doi: 10.3724/SP.J.1005.2011.00040
Wang Y F, Huang J Y, Yang J S.Progress in the study of producing reversible male sterile line by genetic engineering. Hereditas (Beijing), 2011, 33(1): 40-47.
doi: 10.3724/SP.J.1005.2011.00040
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[9] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[10] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[11] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[12] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[13] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[14] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[15] 曾强,孟秋成,邓力华,李锦江,于江辉,翁绿水,肖国樱. 抗草甘膦、抗螟虫水稻E1C608的鉴定和重要表型特征分析 *[J]. 中国生物工程杂志, 2019, 39(11): 31-38.