Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (9): 31-37    
研究报告     
拟南芥SCBP60g蛋白的亚细胞定位及其功能研究
万永青1, 李瑞丽1,2, 邹博1, 万东莉1,3, 王瑞刚1, 李国婧1
1.内蒙古农业大学生命科学学院 呼和浩特 010018;
2. 内蒙古乌兰察布市疾病预防控制中心 乌兰察布市 012000;
3. 中国农业科学院草原研究所 呼和浩特 010010
Subcellular Localization and Functional Studying of SCBP60g in Arabidopsis
WAN Yong-qing1, LI Rui-li1,2, ZOU Bo1, WAN Dong-li1,3, WANG Rui-gang1, LI Guo-jing 1
1. College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018 China;
2. Ulanqab Centers for Diseases Controland Prevention, Ulanqab 012000, China;
3. Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
 全文: PDF(7983 KB)   HTML
摘要: 为了研究 SCBP60g 的功能,研究利用Gateway克隆技术构建了GFP报告基因与拟南芥 SCBP60g 基因融合表达载体和基因功能互补表达载体并获得了转基因植物,通过激光共聚焦显微镜观察了SCBP60g蛋白的亚细胞定位情况,利用活体细菌生长量检测实验研究了SCBP60g蛋白在抗病中的功能;同时构建了 SCBP60g 过表达载体并检测了转基因植物对ABA的响应情况。结果显示,SCBP60g定位于细胞核; SCBP60g 基因不能恢复 CBP60g 基因突变体对丁香假单胞菌的敏感性;过量表达 SCBP60g 基因不影响拟南芥对ABA的敏感性。表明SCBP60g没有参与拟南芥的抗病防御反应以及对ABA的响应。
关键词: 拟南芥钙调素结合蛋白亚细胞定位抗病性ABA    
Abstract: The GFP fused SCBP60g constructs and SCBP60g complementation constructs were made by Gateway cloning technology, and the transgenic plants were obtained. Subcellular localization SCBP60g was observed by confocal laser-scanning microscope, and the function of plant defense against pathogens was examined by in planta bacterial growth assay. In addition, SCBP60g overexpression vector was constructed and the sensitivity to ABA of the transgenic plants was also examined. The results showed:SCBP60g protein localized in the nuclei; SCBP60g failed to restore the sensitivity of cbp60g-1 mutant to Pseudomonas syringae; overexpression of SCBP60g did not affect the response of Arabidopsis to ABA. These results indicated that SCBP60g was not involved in Arabidopsis thaliana response to pathogens and ABA.
Key words: Arabidopsis thaliana    Calmodulin binding protein    Subcellular localization    Diseace resistance    ABA
收稿日期: 2013-06-25 出版日期: 2013-09-25
ZTFLH:  Q291  
基金资助: 国家自然科学基金(30860030);教育部新世纪优秀人才支持计划(NCET-08-0871)资助项目
通讯作者: 李国婧liguojing@imau.edu.cn     E-mail: liguojing@imau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
万永青
李瑞丽
邹博
万东莉
王瑞刚
李国婧

引用本文:

万永青, 李瑞丽, 邹博, 万东莉, 王瑞刚, 李国婧. 拟南芥SCBP60g蛋白的亚细胞定位及其功能研究[J]. 中国生物工程杂志, 2013, 33(9): 31-37.

WAN Yong-qing, LI Rui-li, ZOU Bo, WAN Dong-li, WANG Rui-gang, LI Guo-jing. Subcellular Localization and Functional Studying of SCBP60g in Arabidopsis. China Biotechnology, 2013, 33(9): 31-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I9/31

[1] Yang T, Poovaiah B W. Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci, 2003, 8(10):505-512.
[2] Hetherington A M, Brownlee C. The generation of Ca2+ signals in plants. Annual Review of Plant Biology, 2004, 55:401-427.
[3] Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14 Suppl:S389-400.
[4] Popescu S C, Popescu G V, Bachan S, et al. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci U S A, 2007, 104(11):4730-4735.
[5] Snedden W A, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. New Phytologist, 2001, 151:35-66.
[6] Reddy V S, Ali G S, Reddy A S. Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem, 2002, 277(12):9840-9852.
[7] Bouche N, Yellin A, Snedden W A, et al. Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol, 2005, 56(1):435-466.
[8] Wang L, Tsuda K, Truman W, et al. CBP60g and SARD1 play partially redundant, critical roles in salicylic acid signaling. Plant J, 2011, 67(6):1029-1041.
[9] Zhang Y, Xu S, Ding P, et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci U S A, 2010, 107(42):18220-18225.
[10] Wang L, Tsuda K, Sato M, et al. Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog, 2009, 5(2):e1000301.
[11] Truman W, Glazebrook J. Co-expression analysis identifies putative targets for CBP60g and SARD1 regulation. BMC Plant Biol, 2012, 12:216.
[12] Wan D L, Li R L, Zou B, et al. Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep, 2012, 31(7):1269-1281.
[13] 万东莉, 李瑞丽, 邹博,等. 拟南芥钙调素结合蛋白基因启动子的克隆及表达. 西北植物学报, 2012, 32(1):17-22. Wan D L, Li R L, Zou B, et al. Cloning and expression pattern analysis of a promoter of calmodulin binding protein gene in Arabidopsis. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(1):17-22.
[14] 万东莉. CBP60g正调控拟南芥对丁香假单胞菌、脱落酸和干旱的响应. 内蒙古农业大学, 2012. Wan D L. CBP60g Positively Regulates the Responses of Arabidopsis thaliana to Pseudomonas syringae, Abscisic Acid and Drought. Inner Mongolia Agricultural University. 2012.
[15] Ge X, Li G J, Wang S B, et al. AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. Plant Physiol, 2007, 145(1):204-215.
[16] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16(6):735-743.
[17] Curtis M D, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol, 2003, 133(2):462-469.
[18] 李瑞丽. 拟南芥SCBP60g蛋白的表达模式及其功能研究. 内蒙古农业大学, 2012. Li R L. Expression Pattern and Function Analysis of Arabidopsis SCBP60g. Inner Mongolia Agricultural University. 2012.
[1] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[2] 杨飞芸,杨天瑞,刘坤,崔爽,王瑞刚,李国婧. 异源表达CiRS基因拟南芥的黄酮代谢及抑菌能力研究 *[J]. 中国生物工程杂志, 2019, 39(11): 22-30.
[3] 金雪,宋敬臻,谢志平. 酿酒酵母GPCR蛋白Ste2亚细胞定位信号探索 *[J]. 中国生物工程杂志, 2019, 39(11): 39-53.
[4] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[5] 战春君, 李翔, 刘国强, 刘秀霞, 杨艳坤, 白仲虎. 巴斯德毕赤酵母甘油转运体的发现及功能研究[J]. 中国生物工程杂志, 2017, 37(7): 48-55.
[6] 王曦光, 王娟, 张琳. 拟南芥蛋白质丰度与基因翻译效率关联分析[J]. 中国生物工程杂志, 2017, 37(2): 40-47.
[7] 杨飞芸,武燕燕,崔爽,张秀娟,王瑞刚,李国婧. 异源表达CiRS基因通过生成白藜芦醇增强拟南芥的抗氧化能力 *[J]. 中国生物工程杂志, 2017, 37(12): 27-33.
[8] 万永青, 杨洋, 张春林, 万东莉, 杨爱琴, 杨杞, 王瑞刚, 李国婧. 中间锦鸡儿DHN1基因克隆及表达分析[J]. 中国生物工程杂志, 2016, 36(4): 88-96.
[9] 于秀敏, 岳文冉, 张燕娜, 杨飞芸, 王瑞刚, 李国婧, 杨杞. 异源表达CkLEA1基因增强了拟南芥对非生物胁迫的耐受性[J]. 中国生物工程杂志, 2016, 36(10): 28-34.
[10] 聂利珍, 于肖夏, 李国婧, 孙杰, 姜超, 于卓. Rd29A启动子驱动AtCDPK1基因转化马铃薯的研究[J]. 中国生物工程杂志, 2015, 35(11): 13-22.
[11] 艾君, 姜潮, 刘敏, 王晓艳, 田海山, 李校堃. 拟南芥双油体蛋白融合表达KGF-2及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(1): 21-26.
[12] 于欣鑫, 高晋君, 李勇, 李晶. flg22诱导的拟南芥转录组分析及芥子油苷代谢途径的变化[J]. 中国生物工程杂志, 2014, 34(5): 30-38.
[13] 高涵, 薛利军, 刘小北, 冒晓蓓, 任丽丽, 耿建, 戴婷婷, 于锋, 褚晓源. 幽门螺杆菌BabA蛋白N段的基因克隆、表达纯化及体外粘附活性评价[J]. 中国生物工程杂志, 2013, 33(3): 34-40.
[14] 孙佃臣, 沙爱华, 单志慧, 周蓉, 周新安. 拟南芥miR399耐低磷胁迫研究进展[J]. 中国生物工程杂志, 2011, 31(11): 102-106.
[15] 丛靖宇 高仙灵 朱宏 万东莉 李国婧 张镝 杜红 王瑞刚. 有机磷诱导拟南芥差异蛋白表达及其对酯酶同功酶活性的抑制[J]. 中国生物工程杂志, 2010, 30(07): 0-0.