Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (5): 30-38    DOI: 10.13523/j.cb.20140505
研究报告     
flg22诱导的拟南芥转录组分析及芥子油苷代谢途径的变化
于欣鑫, 高晋君, 李勇, 李晶
东北农业大学 农业生物功能基因重点实验室 哈尔滨 150030
Transcriptome Analysis of Arabidopsis thaliana and Changes of Glucosinolates Metabolism Pathway Induced by Flg22
YU Xin-xin, GAO Jin-jun, LI Yong, LI Jing
Northeast Agricultural University, Key Laboratory of Agricultural Biological Functional Genes, Harbin 150030, China
 全文: PDF(1326 KB)   HTML
摘要:

flg22是细菌鞭毛蛋白N端的一段保守性极高的区域,能够诱导植物天然的免疫反应,为全面了解植物在受到细菌性病原菌侵害后的系统响应,利用Illumina Hiseq2000对flg22处理和未处理的拟南芥幼苗进行转录组测序。对两组数据进行差异表达分析,共获得1 200个差异表达基因,包括290个下调基因和910个上调基因。对差异表达基因进行GO富集分析和KEGG pathway富集分析,结果显示,flg22处理后,拟南芥在能量代谢、氨基酸代谢及次生代谢产物的生物合成等方面产生了巨大变化。芥子油苷是一类在植物防御病原菌的天然免疫反应中起重要作用的次生代谢产物,因此对芥子油苷代谢途径的变化进行了深入分析。根据测序结果,Flg22处理后吲哚族芥子油苷合成途径的基因表达水平显著提高,而脂肪族芥子油苷代谢途径几乎没有变化,进一步对吲哚族芥子油苷合成途径的关键酶基因进行Real Time RT-PCR的分析,验证了测序结果的正确性,证明了吲哚族芥子油苷在植物抗病防御反应中的重要作用。这为深入理解病原菌诱导的植物防御性反应及吲哚族芥子油苷的抗病机制提供了大量参考数据。

关键词: 拟南芥flg22高通量测序天然免疫反应芥子油苷    
Abstract:

Flg22 is a highly conserved amino acid sequence in the N terminal of bacterial flagellum protein, which can induce plant natural immune response. In order to fully understand systemic responses of plant to bacterial pathogens, two sequencing libraries of Arabidopsis seedlings treated and not treated with flg22 were constructed and sequenced using Illumina Hiseq2000. Comparison of the two samples showed 1 200 differentially expressed genes (DEGs), including 290 down-regulated and 910 up-regulated genes. GO functional enrichment and KEGG pathway enrichment analysis revealed that the DEGs were associated with energy metabolism, amino acid metabolism and biosynthesis of secondary metabolites. Glucosinolates are important secondary metabolites involved in innate immune response against pathogen, therefore it is of necessary to analyze glucosinolates metabolism pathway. After flg22 treatment, genes involved in indolic glucosinolate biosynthesis pathway were up-regulated significantly,which is further demonstrated by Real Time RT-PCR, while aliphatic glucosinolate pathway almost had no change, indicating the important role of indolic glucosinolates in plant defense responses. This research provided numerous genetic data to deeply understand pathogen induced defense and the contribution of indolic glucosinolates.

Key words: Arabidopsis thaliana    flg22    High-throughput sequencing    Innate immune    Glucosinolates
收稿日期: 2014-01-13 出版日期: 2014-05-25
ZTFLH:  Q945  
基金资助:

国家自然科学基金资助项目(31370334)

通讯作者: 李晶     E-mail: lijing@neau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

于欣鑫, 高晋君, 李勇, 李晶. flg22诱导的拟南芥转录组分析及芥子油苷代谢途径的变化[J]. 中国生物工程杂志, 2014, 34(5): 30-38.

YU Xin-xin, GAO Jin-jun, LI Yong, LI Jing. Transcriptome Analysis of Arabidopsis thaliana and Changes of Glucosinolates Metabolism Pathway Induced by Flg22. China Biotechnology, 2014, 34(5): 30-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140505        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I5/30


[1] Jones J D G, Dangl J L. The plant immune system. Nature, 2006,444(7117) : 323-329.

[2] Aziz A, Heyraud A, Lambert B. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta, 2004, 218(5): 767-774.

[3] Ferrari S, Galletti R, Denoux C, et al. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires Phytoalexin Deficient3. Plant physiology, 2007, 144(1): 367-379.

[4] Zipfel C, Robatzek S, Navarro L, et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004, 428(6984): 764-767.

[5] Felix G, Duran J D, Volko S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 1999, 18(3): 265-276.

[6] Gómez-Gómez L, Boller T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular cell, 2000, 5(6): 1003-1011.

[7] Chinchilla D, Bauer Z, Regenass M, et al. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. The Plant Cell Online, 2006, 18(2): 465-476.

[8] Chinchilla D, Zipfel C, Robatzek S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448(7152): 497-500.

[9] Bari R, Jones J D G. Role of plant hormones in plant defence responses. Plant molecular biology, 2009, 69(4): 473-488.

[10] Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415(6875): 977-983.

[11] Mikkelsen M D, Petersen B L, Glawischnig E, et al. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiology, 2003, 131(1): 298-308.

[12] Yan X, Chen S. Regulation of plant glucosinolate metabolism. Planta, 2007, 226(6): 1343-1352.

[13] Clay N K, Adio A M, Denoux C, et al. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 2009, 323(5910): 95-101.

[14] Agerbirk N, De Vos M, Kim J H, et al. Indole glucosinolate breakdown and its biological effects. Phytochemistry Reviews, 2009, 8(1): 101-120.

[15] Mikkelsen M D, Petersen B L, Olsen C E, et al. Biosynthesis and metabolic engineering of glucosinolates. Amino Acids, 2002, 22(3): 279-295.

[16] Langmead B, Trapnell C, Po PM, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 2009, 10(3): R25

[17] Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25(9): 1105-1111.

[18] Anders S, Huber W. Differential expression of RNA-Seq data at the gene level-the DESeq package. 2012.

[19] Mikkelsen M D, Petersen B L, Glawischnig E, et al. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiology, 2003, 131(1): 298-308.

[20] Mldrup M E, Geu-Flores F, Halkier B A. Assigning gene function in biosynthetic pathways: Camalexin and beyond. The Plant Cell Online, 2013, 25(2): 360-367.

[21] Pfalz M, Vogel H, Kroymann J. The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. The Plant Cell Online, 2009, 21(3): 985-999.

[22] Zhou N, Tootle T L, Glazebrook J. Arabidopsis PAD3 , a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. The Plant Cell Online, 1999, 11(12): 2419-2428.

[23] Mao G, Meng X, Liu Y, et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. The Plant Cell Online, 2011, 23(4): 1639-1653.

[24] Nafisi M, Snderby I E, Hansen B G, et al. Cytochromes P450 in the biosynthesis of glucosinolates and indole alkaloids. Phytochemistry reviews, 2006, 5(2-3): 331-346.

[1] 戴寒莹,徐克前. DNA双链断裂检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 55-62.
[2] 潘卫兵,朱鹏,曾启昂,王凯,刘松. 5例前列腺癌T细胞受体β链CDR3的多样性分析 *[J]. 中国生物工程杂志, 2019, 39(3): 7-12.
[3] 杨飞芸,杨天瑞,刘坤,崔爽,王瑞刚,李国婧. 异源表达CiRS基因拟南芥的黄酮代谢及抑菌能力研究 *[J]. 中国生物工程杂志, 2019, 39(11): 22-30.
[4] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.
[5] 王曦光, 王娟, 张琳. 拟南芥蛋白质丰度与基因翻译效率关联分析[J]. 中国生物工程杂志, 2017, 37(2): 40-47.
[6] 杨飞芸,武燕燕,崔爽,张秀娟,王瑞刚,李国婧. 异源表达CiRS基因通过生成白藜芦醇增强拟南芥的抗氧化能力 *[J]. 中国生物工程杂志, 2017, 37(12): 27-33.
[7] 王慧煜, 何鮦鮦, 刘佳佳, 范航, 宋锋林, 梅琳, 童贻刚, 韩雪清. 应用高通量测序技术对蚊携带RNA病毒的检测研究[J]. 中国生物工程杂志, 2017, 37(11): 1-5.
[8] 安云鹤, 程小艳, 田彦捷, 马凯, 高丽娟, 武会娟. DNA提取对微生物多样性测序分析的影响[J]. 中国生物工程杂志, 2017, 37(11): 12-18.
[9] 于秀敏, 岳文冉, 张燕娜, 杨飞芸, 王瑞刚, 李国婧, 杨杞. 异源表达CkLEA1基因增强了拟南芥对非生物胁迫的耐受性[J]. 中国生物工程杂志, 2016, 36(10): 28-34.
[10] 聂利珍, 于肖夏, 李国婧, 孙杰, 姜超, 于卓. Rd29A启动子驱动AtCDPK1基因转化马铃薯的研究[J]. 中国生物工程杂志, 2015, 35(11): 13-22.
[11] 艾君, 姜潮, 刘敏, 王晓艳, 田海山, 李校堃. 拟南芥双油体蛋白融合表达KGF-2及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(1): 21-26.
[12] 李俊娥, 贾利鹃, 闫鹏程, 闫学青, 谢国云, 陈禹保. miRDOA:集数据存储与在线分析于一体的综合型microRNA数据库[J]. 中国生物工程杂志, 2014, 34(11): 1-8.
[13] 安云鹤, 李宝明, 李越, 尹玲, 曲俊杰, 苏晓星, 武会娟. 癌症基因组测序方案制定的研究进展[J]. 中国生物工程杂志, 2014, 34(11): 9-17.
[14] 万永青, 李瑞丽, 邹博, 万东莉, 王瑞刚, 李国婧. 拟南芥SCBP60g蛋白的亚细胞定位及其功能研究[J]. 中国生物工程杂志, 2013, 33(9): 31-37.
[15] 吕昌勇, 陈朝银, 葛锋, 刘迪秋, 孔祥君. 微生物分子生态学研究方法的新进展[J]. 中国生物工程杂志, 2012, 32(08): 111-118.