Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (2): 40-47    DOI: 10.13523/j.cb.20170207
研究报告     
拟南芥蛋白质丰度与基因翻译效率关联分析
王曦光1, 王娟1, 张琳2
1. 加拿大渥太华大学生物系 渥太华 KIN 6N5;
2. 中国农业科学院农业资源与农业区划研究所 北京 100081
A. thaliana Protein Abundance Analysis Coresponding with Elongation Efficiency
WANG Xi-guang1, WANG Juan1, ZHANG Lin2
1. Department of Biology, University of Ottawa, Ottawa, Canada K1N 6N5;
2. Agricultural Resources and Regional Planning Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
 全文: PDF(651 KB)   HTML
摘要:

蛋白质的合成是一个复杂的过程,其中蛋白质丰度是衡量基因表达的一个最终指标,在生物体生命活动中具有重要作用的蛋白质通常都为高丰度蛋白质。通过对PaxDB网站拟南芥各组织器官蛋白质丰度的统计,并采用DAMBE和CodonW计算其对应基因的ITE和CAI值,最后用R语言分析蛋白质丰度与ITE的关系,并采用对数值替代原有的丰度值。结果表明,所使用的ITE较原有CAI的分析方法更有效,在拟南芥的基因中高表达基因在不同的组织中有相似的表达水平,拟南芥蛋白质丰度与ITE有很好的相关性,并且ITE值能更好地拟合拟南芥蛋白质丰度值的变化。

关键词: 蛋白质丰度翻译延伸效率拟南芥基因表达CAIITE相关分析    
Abstract:

Protein synthesis is a complex dynamic process, its abundance is a final measurement of gene expression level. Functional important proteins are always highly expressed in most of tissues. The protein abundance of A. thaliana from PaxDB database and computed translation elongation index (ITE and CAI) of protein coding genes of A. thaliana by both DAMBE and codon W were compiled, and the correlation between protein abundance and translation elongation efficiency was analysed,especially used logarithm in the analysis. The results showed that ITE is better than orignal CAI to analysis, high expressed genes have similar expression level in different tissues in A. thaliana and there was clear correlation between protein abundance and ITE in A. thaliana.

Key words: ITE    Protein abundance    Elongation efficiency    Gene expression    CAI    Correlation analysis    A. thaliana
收稿日期: 2016-06-20 出版日期: 2017-02-25
ZTFLH:  G819  
通讯作者: 张琳     E-mail: zhshisss@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王曦光, 王娟, 张琳. 拟南芥蛋白质丰度与基因翻译效率关联分析[J]. 中国生物工程杂志, 2017, 37(2): 40-47.

WANG Xi-guang, WANG Juan, ZHANG Lin. A. thaliana Protein Abundance Analysis Coresponding with Elongation Efficiency. China Biotechnology, 2017, 37(2): 40-47.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170207        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I2/40

[1] 李定辰, 杨冬, 姜颖, 等. 蛋白质丰度调控及整体分布的规律性认识. 中国科学生命科学, 2013, 43(1):54-62. Li D C, Yang D, Jiang Y, et al. Insights into the regular patterns of protein abundance regulation and distribution. Scientia Sinica Vitae, 2013, 43(1):54-62.
[2] Marquerat S, Schmidt A, Codlin S, et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell, 2012, 151(3):671-683.
[3] Schwanhausser B, Weiss M, Simonovic M,et al. Global quantification of mammalian gene expression control. Nature, 2011, 473(7347):337-342.
[4] Vogel C, Abreu R S, Ko D, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol, 2010, 6(1):400.
[5] Ingvarsson P K. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol Biol Evol, 2007, 24(3):836-884.
[6] McHardy A C, Puhler A, Kalinowski J, et al. Comparing expression level-dependent features in codon usage with protein abundance:an analysis of ‘predictive proteomics’. Proteomics, 2004, 4(1):46-45.
[7] Ikemura T.Correlation between codon usage and tRNA content in microorganisms. In:Hatfield D L, Lee B J, Pirtle R M. Transfer RNA in Protein Synthesis, Boca Raton:CRC Press,1992:87-111.
[8] Na D, Lee D. RBSDesigner:software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics, 2010,26(20):2633-2634.
[9] Nakamoto T. A unified view of the initiation of protein synthesis. Biochem Biophys Res Commun, 2006,341(3):675-678.
[10] Schattner P, Brooks A N, Lowe T M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res, 2005,33:686-689.
[11] Seo S W, Yang J S, Kim I, et al. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng, 2012,15(1):67-74.
[12] Tuller T, Waldman Y Y, Kupiec M, et al. Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A, 2010,107(8):3645-3650.
[13] Xia X. Position weight matrix, Gibbs sampler, and the associated significance tests in motif characterization and prediction. Scientifica, 2012:917540.
[14] Sharp P M, Li W H. The codon adaptation index——a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res, 1987,15(3):1281-1295.
[15] Ikemura T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol, 1982,158(4):573-597.
[16] Comeron J M, Aguade M. An evaluation of measures of synonymous codon usage bias. J Mol Evol, 1998,47(3):268-274.
[17] Xia X. DAMBE5:A comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol,2013,30(7):1720-1728.
[18] Xia X. A major controversy in codon-anticodon adaptation resolved by a new codon usage index. Genetics, 2014,199(2):573-579.
[19] Chithambaram S, Prabhakaran R, Xia X. Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli. Molecular Biology & Evolution,2014,31(6):1606-1617.
[20] Wang M, Weiss M, Simonovic M, et al. PaxDb, a database of protein abundance averages across all three domains of life. Molecular & Cellular Proteomics, 2012,11(8):492-500.
[21] Wang M, Herrmann C J, Simonovic M, et al. Version 4.0 of PaxDb:Protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics,2015,15(18):3163-3168.
[22] Schrimpf S P, Weiss M, Reiter L, et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biology, 2009,7(3):616-627.
[23] Baerenfaller K, Grossmann J, Grobei M A, et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science,2008,320(5878):938-941.
[24] Castellana N E, Payne S H, Shen Z, et al. Discovery and revision of Arabidopsis genes by proteogenomics. Proceedings of the National Academy of Sciences,2008,105(52):21034-21038.
[25] Schneeberger K. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A, 2011,108(25):10249-10254.
[26] Theologis A, Ecker J R, Palm C J, et al.Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 2000,408(6814):816-820.
[27] Salanoubat M, Lemcke K, Rieger M. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature, 2000,408(6814):820-822.
[28] Tabata S, Kaneko T, Nakamura Y, et al.Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature, 2000,408(6814):823-826.
[29] Sato S.Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res, 1999,6(5):283-290.
[30] Giegé P.RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci U S A, 1999,96(26):15324-15329.
[31] Lin X.Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature, 1999,402(6763):761-768.
[32] Mayer K.Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature, 1999,402(6763):769-777.
[33] Wright F. The effective number of codons used in a gene. Gene, 1990,87(1):23-29.
[34] Xia X. An improved implementation of codon adaptation index. Evolutionary Bioinformatics, 2007,3(1):53-58.
[35] Nagaraj N, Wisniewski J R, Geiger T, et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol, 2011, 7(1):548-557.
[36] Hofacker I L. Vienna RNA secondary structure server.Nucleic Acids Res, 2003,31(13):3429-3431.
[37] Lukow O M, Preston K R, Watts B M, et al. Measuring the influence of wheat protein in breadmaking:from damage control to genetic manipulation of protein composition in wheat. In:Wvigleyc W.Wheat Quality Elucidation. The Bushuk Legacy. St-Paul, MN:2002,42(3):50-64.
[38] Mokshina N, Gorshkova T, Deyholos M K. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) Bast Fibers. Plos One, 2014,9(6):e97949.
[39] Ahmed M M, Ralph Patrick,Timothy L,et al. Predicting the dynamics of protein abundance. Molecular & Cellular Proteomics, 2014,13(5):1330-1340.

[1] 杨飞芸,杨天瑞,刘坤,崔爽,王瑞刚,李国婧. 异源表达CiRS基因拟南芥的黄酮代谢及抑菌能力研究 *[J]. 中国生物工程杂志, 2019, 39(11): 22-30.
[2] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[3] 庄旻敏,贾晓会,施定基,朱嘉诚,冯思豫,何培民,贾睿. 转基因聚球藻7942中vp28基因表达效率及其光合特性分析[J]. 中国生物工程杂志, 2018, 38(4): 30-37.
[4] 姚立鹏,葛炜,胡英君,骆海燕,吴珊珊,林飞蕾,郭俊明. 环状RNA的结构和功能特性及其与胃癌发生的关系 *[J]. 中国生物工程杂志, 2018, 38(2): 82-88.
[5] 张艳芳, 孙瑞芬, 郭树春, 侯建华. 向日葵V-ATPase a3亚基基因的克隆及表达分析[J]. 中国生物工程杂志, 2017, 37(5): 19-27.
[6] 项丽, 王申, 田海山, 钟美娟, 周汝滨, 曹定国, 梁朋, 张国平, 何滔, 庞实锋. 小鼠c-Myc基因的克隆表达及其纯化[J]. 中国生物工程杂志, 2017, 37(2): 20-25.
[7] 杨飞芸,武燕燕,崔爽,张秀娟,王瑞刚,李国婧. 异源表达CiRS基因通过生成白藜芦醇增强拟南芥的抗氧化能力 *[J]. 中国生物工程杂志, 2017, 37(12): 27-33.
[8] 栗晓飞, 曹英秀, 宋浩. CRISPR/Cas9系统研究进展[J]. 中国生物工程杂志, 2017, 37(10): 86-92.
[9] 史利平, 季静, 王罡, 金超, 谢超, 杜希龙, 关春峰, 张烈, 李辰. 盐胁迫条件下玉米萜类合成相关基因的表达分析[J]. 中国生物工程杂志, 2016, 36(8): 31-37.
[10] 李达, 代鹏, 王伟, 张文涛, 汪钦, 束毅, 祝春来, 纪奇峰, 梁平, 颜真. PLCE1基因及rs2274223和rs3765524单体型的克隆与表达[J]. 中国生物工程杂志, 2016, 36(12): 1-7.
[11] 于秀敏, 岳文冉, 张燕娜, 杨飞芸, 王瑞刚, 李国婧, 杨杞. 异源表达CkLEA1基因增强了拟南芥对非生物胁迫的耐受性[J]. 中国生物工程杂志, 2016, 36(10): 28-34.
[12] 孙瑞芬, 张艳芳, 郭树春, 于海峰, 李素萍, 乔慧蕾, 聂惠, 安玉麟. 向日葵ACC氧化酶基因(HaACO1)的克隆及表达分析[J]. 中国生物工程杂志, 2015, 35(9): 21-27.
[13] 查代明, 张炳火, 李汉全, 闫云君. 假单胞菌属脂肪酶的分子生物学研究进展[J]. 中国生物工程杂志, 2015, 35(9): 114-121.
[14] 徐登安, 赵纯钦, 张赤红, 陈静. 大麦水孔蛋白基因HvTIP2;1及其启动子的表达特性分析[J]. 中国生物工程杂志, 2015, 35(7): 15-21.
[15] 崔成成, 毕艳红, 王应明, 李攀, 杨思达, 黄芬, 曾韦锟, 井申荣. 具有增强蛋白质表达活性序列ER3的筛选及其功能区域的初步鉴定[J]. 中国生物工程杂志, 2015, 35(3): 18-24.