Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (7): 48-55    DOI: 10.13523/j.cb.20170710
研究报告     
巴斯德毕赤酵母甘油转运体的发现及功能研究
战春君1,2,3, 李翔1,2,3, 刘国强1,2,3, 刘秀霞1,2,3, 杨艳坤1,2,3, 白仲虎1,2,3
1. 江南大学粮食发酵工艺与技术国家工程实验室无锡 214122;
2. 江南大学工业生物技术教育部重点实验室无锡 214122;
3. 江南大学糖化学与生物技术教育部重点实验室无锡 214122
Identification of Glycerol Transporter in Pichia pastoris and Function Research
ZHAN Chun-jun1,2,3, LI Xiang1,2,3, LIU Guo-qiang1,2,3, LIU Xiu-xia1,2,3, YANG Yan-kun1,2,3, BAI Zhong-hu1,2,3
1. National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China;
2. The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
3. The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(1286 KB)   HTML
摘要: 目的:分离确认巴斯德毕赤酵母中甘油转运体并初步研究其功能。方法:通过生物信息学方法从NCBI数据库中查找可能的甘油转运体(gt1,GeneID:8197545),并通过DAS软件对其跨膜结构域进行预测。通过PCR方法扩增该基因并将其与EGFP融合克隆到pPICZ B及pRS424载体进行亚细胞定位;同时将其与pRS424载体连接后电转到粟酒裂殖酵母中进行异源表达确定其功能;通过同源重组敲除gt1基因并在不同培养基中培养测定aox1基因表达量。结果:生物信息学显示与酿酒酵母中已经证明的甘油转运体(sugar transporter 1,stl1)类似,GT1蛋白同样为具有疏水结构域的跨膜蛋白,同时亚细胞定位结果显示GT1蛋白定位于细胞膜上,包含有gt1基因的粟酒裂殖酵母可以在以甘油作为唯一碳源的培养基中生长而野生型不可以;在Δgt1突变体中aox1基因可以获得组成型表达。结论:分离并确认了巴斯德毕赤酵母中的甘油转运体GT1,并初步证明其与aox1基因甘油阻遏相关。
关键词: 巴斯德毕赤酵母甘油转运体亚细胞定位甘油阻遏同源重组    
Abstract: Object Separation and identification glycerol transporter in Pichia pastoris (P. pastoris) and studing its function. Methods: the candidate glycerol transporter (gt1, GeneID:8197545) was found in NCBI database by bioinformatics, and transmembrance structure was predicted by DAS. Targeted gene fused with egfp was cloned into pPICZ B and pRS424 to study its location in cells; recombinant plasmid (gt1 + pRS424) was transformed into Schizosaccharomyces pombe (S. pombe) to study its function; In order to study the relationship between gt1 and aox1, gt1 was deleted by homologous recombination, and enzyme activity of AOX1 in wild and mutant were detected. Results: according to results of bioinformatics, it was found that GT1 share the same transmembrance regions with sugar transporter 1(stl1) which has been identified as a glycerol transporter in Saccharomuces cerevisiae (S. cerevisiae), results of subcellular localization showed that GT1 located on membrance, S. pombe transformed into gt1 could growth on glycerol medium, but wild type could not, which suggested that GT1 could absorbed glycerol from medium to support cells growth. Moreover, AOX1 achieved constitutive expression in Δgt1. Conclusion: glycerol transporter (gt1) in P. pastoris was separated and identified, and its function in glycerol repression was preliminarily clarified.
Key words: Glycerol repression    Homologous recombination    Subcellular localization    Glycerol transporter    Pichia pastoris
收稿日期: 2017-02-23 出版日期: 2017-07-25
ZTFLH:  Q815  
基金资助: 国家自然科学基金项目(面上项目)(31570034)、江苏省自然科学基金项目(BK20150148)、中央高校基本科研业务费专项资金(JUSRP51401A)资助项目
通讯作者: 杨艳坤, 白仲虎     E-mail: yangyankun@jiangnan.edu.cn;baizhonghu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
战春君
刘国强
杨艳坤
白仲虎
李翔
刘秀霞

引用本文:

战春君, 李翔, 刘国强, 刘秀霞, 杨艳坤, 白仲虎. 巴斯德毕赤酵母甘油转运体的发现及功能研究[J]. 中国生物工程杂志, 2017, 37(7): 48-55.

ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research. China Biotechnology, 2017, 37(7): 48-55.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170710        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I7/48

[1] Gellissen G. Heterologous protein production in methylotrophic yeasts. Applied Microbiology and Biotechnology, 2000, 54(6): 741-750.
[2] Houard S, Heinderyckx M, Bollen A. Engineering of non-conventional yeasts for efficient synthesis of macromolecules: the methylotrophic genera. Biochimie, 2002, 84(11): 1089-1093.
[3] Hasslacher M, Schall M, Hayn M, et al. High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expression and Purification, 1997, 11(1): 61-71.
[4] Werten M W T, Van Den Bosch T J, Wind R D, et al. High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast, 1999, 15(11): 1087-1096.
[5] Koutz P, Davis G R, Stillman C, et al. Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast (Chichester, England), 1989, 5(3): 167-177.
[6] 姚学勤. 甘油去阻遏表型巴斯德毕赤酵母(Pichia pastoris)的构建及其初步研究. 北京:中国人民解放军军事医学科学院, 2009. Yao X Q. Construction of Pichia pastoris Strain Deficient in Glycerol Catabolite Repression Ans, in the Presence of Glycerol, Expressing Heterologous Proteins Under Induction by Methanol. Beijing:Academy of Military Medical Sciences,2009.
[7] Cregg J M, Madden K R, Barringer K J, et al. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and Cellular Biology, 1989, 9(3): 1316-1323.
[8] Tschopp J F, Brust P F, Cregg J M, et al. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Research, 1987, 15(9): 3859-3876.
[9] Ahmad M, Hirz M, Pichler H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 2014, 98(12): 5301-5317.
[10] Tachibana C, Yoo J Y, TagnE J B, et al. Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Molecular and Cellular Biology, 2005, 25(6): 2138-2146.
[11] Stroman D W, Brust P F, Ellis S B, et al. Regulatory Region for Heterologous Gene Expression in Yeast:US, EP0483115.1992.
[12] Lin-Cereghino G P, Godfrey L, De La Cruz B J, et al. Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Molecular and Cellular Biology, 2006, 26(3): 883-897.
[13] Kayingo G, Martins A, Andrie R, et al. A permease encoded by STL1 is required for active glycerol uptake by Candida albicans. Microbiology-Sgm, 2009, 155(5):1547-1557.
[14] Klein T, Heinzle E, Schneider K. Metabolic fluxes in Schizosaccharomyces pombe grown on glucose and mixtures of glycerol and acetate. Applied Microbiology and Biotechnology, 2013, 97(11): 5013-5026.
[15] Stasyk O V, Nazarko T Y, Sibirny A A. Methods of Plate Pexophagy Monitoring and Positive Selection for ATG Gene Cloning in Yeasts//Klionsky D J. Autophagy: Lower Eukaryotes And Non-Mammalian Systems. US:Elsevier Inc, 2008: 229-239.
[16] Celik E, Calik P. Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012, 30(5): 1108-1118.
[17] Kranthi B V, Kumar R, Kumar N V, et al. Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in Pichia pastoris. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms, 2009, 1789(6-8): 460-468.
[18] Parua P K, Ratnakumar S, Braun K A, et al. 14-3-3(Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Molecular and Cellular Biology, 2010, 30(22): 5273-5283.
[19] Zhang W H, Smith L A, Plantz B A, et al. Design of methanol feed control in Pichia pastoris fermentations based upon a growth model. Biotechnology Progress, 2002, 18(6): 1392-1399.
[20] Sasano Y, Yurimoto H, Kuriyama M, et al. Trm2p-dependent derepression is essential for methanol-specific gene activation in the methylotrophic yeast Candida boidinii. Fems Yeast Research, 2010, 10(5): 535-544.
[21] Parua P K, Ryan P M, Trang K, et al. Pichia pastoris 14-3-3 regulates transcriptional activity of the methanol inducible transcription factor Mxr1 by direct interaction. Molecular Microbiology, 2012, 85(2): 282-298.
[22] Leao-Helder A N, Krikken A M, Van Der Klei I J, et al. Transcriptional down-regulation of peroxisome numbers affects selective peroxisome degradation in Hansenula polymorpha. Journal of Biological Chemistry, 2003, 278(42): 40749-40756.
[23] Wang X, Wang Q, Wang J, et al. Mit1 transcription factor mediates methanol signaling and regulates the alcohol oxidase 1(AOX1) promoter in Pichia pastoris. Journal of Biological Chemistry, 2016, 291(12): 6245-6261.
[1] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[2] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[3] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[4] 王刚,肖雨,李义,刘志刚,裴成利,武丽达,李艳丽,王希庆,张明磊,陈光,佟毅. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响 *[J]. 中国生物工程杂志, 2019, 39(8): 66-73.
[5] 金雪,宋敬臻,谢志平. 酿酒酵母GPCR蛋白Ste2亚细胞定位信号探索 *[J]. 中国生物工程杂志, 2019, 39(11): 39-53.
[6] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[7] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.
[8] 冯雪, 高香, 牛纯青, 刘堰. 密码子优化后的αB-晶状体蛋白基因毕赤酵母重组质粒的构建及表达的初步研究[J]. 中国生物工程杂志, 2017, 37(7): 42-47.
[9] 张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.
[10] 陈建武, 任红艳, 华文君, 刘西梅, 綦世金, 周黎, 欧阳艳, 毕延震, 杨烨, 郑新民. 一种用于提高基因打靶效率的双荧光筛选策略[J]. 中国生物工程杂志, 2017, 37(1): 58-63.
[11] 万永青, 杨洋, 张春林, 万东莉, 杨爱琴, 杨杞, 王瑞刚, 李国婧. 中间锦鸡儿DHN1基因克隆及表达分析[J]. 中国生物工程杂志, 2016, 36(4): 88-96.
[12] 郝梓凯, 李丕武, 郝昭程, 陈利飞. 敲除frdB基因对大肠杆菌厌氧混合酸发酵的影响[J]. 中国生物工程杂志, 2014, 34(11): 67-75.
[13] 马怀远, 黄非, 白林含. 利用同源重组的方法提高大肠杆菌W3110天冬氨酸的积累[J]. 中国生物工程杂志, 2014, 34(06): 61-67.
[14] 葛高顺, 张立超, 赵昕, 胡学军, 李雅杰. 大肠杆菌基因组基因无痕敲除的优化方法[J]. 中国生物工程杂志, 2014, 34(06): 68-74.
[15] 万永青, 李瑞丽, 邹博, 万东莉, 王瑞刚, 李国婧. 拟南芥SCBP60g蛋白的亚细胞定位及其功能研究[J]. 中国生物工程杂志, 2013, 33(9): 31-37.