Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (11): 39-53    DOI: 10.13523/j.cb.20191105
研究报告     
酿酒酵母GPCR蛋白Ste2亚细胞定位信号探索 *
金雪,宋敬臻,谢志平()
上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae
JIN Xue,SONG Jing-zhen,XIE Zhi-ping()
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology,Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(3064 KB)   HTML
摘要:

G蛋白偶联受体(G protein-coupled receptor, GPCR)家族蛋白在细胞感受各种胞外信号过程中发挥重要作用。Ste2是酵母细胞中GPCR蛋白之一。大量文献报道了Ste2蛋白突变体对其功能和表达的影响,但关于Ste2亚细胞定位的研究相对较少。这项工作的目的在于确定Ste2亚细胞定位,探究Ste2 不同跨膜域、胞内外环状结构域和N端、C端对其亚细胞定位的影响。构建了一系列结构域删除或替换突变体,通过荧光显微镜观察判断不同结构区域对Ste2亚细胞定位的影响,并通过与已知的细胞器标记蛋白共定位观察验证亚细胞定位判读结果。结果显示:野生型Ste2荧光信号出现在质膜和液泡内腔;C端缺失突变体荧光信号出现在质膜和内质网。在N端、C端、各环状结构域序列采用动物GPCR蛋白ORI7、OR17-40相应结构域替换的突变体中,C端替换导致液泡内腔信号消失,质膜信号强于野生型;N端和部分环状结构域替换不同程度减弱或消除了质膜定位,液泡腔内信号类似于野生型;部分突变体在胞内出现点状分布的荧光信号。由此推断:Ste2 N端,第一、第二胞外环状结构域和第三胞内环状结构域可能具有影响Ste2运输定位到质膜的功能;而C端则可能在Ste2离开细胞膜进入液泡的过程中发挥作用。初步确定了Ste2的不同结构区域对其定位的影响,为深入研究GPCR蛋白的亚细胞定位机制奠定基础。

关键词: 酵母GPCRSte2亚细胞定位分选信号    
Abstract:

Members of the G protein-coupled receptor (GPCR) family play important roles in the sensing of extracellular signals. Ste2 is one of the three GPCR proteins in the budding yeast, Saccharomyces cerevisiae. In the past years, extensive efforts have focused on how the function and expression of Ste2 are affected by various mutations. However, little is known about the mechanisms dictating its proper subcellular localization. To this end, a series of mutants containing deletions or substitutions in the N-terminus, C-terminus, transmembrane domains, intra/extracellular loops are constructed. The subcellular localization of wild-type and mutant Ste2 proteins are observed by fluorescent microscopy, in combination with a set of organelle markers, to determine their localization. Wild-type Ste2 is primarily targeted to the plasma membrane and vacuolar lumen. Deletion of the C-terminus eliminates the vascular signal, targeting the protein to the plasma membrane and endoplasmic reticulum instead. The result is similar when the C-terminus is substituted by the corresponding regions from ORI7 and OR17-40, two mammalian GPCRs. When the N-terminus, first extracellular loop (EL1), the second extracellular loop (EL2) or the third intracellular loop (IL3) is substituted, plasma membrane targeting of Ste2 is substantially attenuated or eliminated. Some of these mutants accumulate on intracellular punctate structures. These results suggest that the N-terminus, EL1, EL2 and IL3 regions contain potential sorting signals regulating the transport of Ste2 to the plasma membrane, and that the C-terminus contains signals for its targeting to the vacuole. The present work provides new insights towards understanding the mechanisms governing GPCR protein subcellular localization.

Key words: Yeast    GPCR    Ste2    Subcellular localization    Sorting signals
收稿日期: 2019-03-29 出版日期: 2019-12-17
ZTFLH:  Q816  
基金资助: * 上海市自然科学基金探索类项目(18ZR1420400);上海市教育委员会科研创新计划(2017-01-07-00-02-E00035)
通讯作者: 谢志平     E-mail: zxie@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
金雪
宋敬臻
谢志平

引用本文:

金雪,宋敬臻,谢志平. 酿酒酵母GPCR蛋白Ste2亚细胞定位信号探索 *[J]. 中国生物工程杂志, 2019, 39(11): 39-53.

JIN Xue,SONG Jing-zhen,XIE Zhi-ping. Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae. China Biotechnology, 2019, 39(11): 39-53.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191105        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I11/39

菌株名称 基因型
BY4741 MATa his31 leu2met15ura3
DJ01 MATa his31 leu2met15ura3trp1△::natMX
YJZ1042 DJ01 ste2△ SH69
YJZ1093 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP
YJZ1094 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N-GFP
YJZ1095 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2C-GFP
YJZ1096 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M1+M2)-GFP
YJZ1097 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M2+M3)-GFP
YJZ1098 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M3+M4)-GFP
YJZ1099 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M4+M5)-GFP
YJZ1100 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M5+M6)-GFP
YJZ1101 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M6+M7)-GFP
YJZ1102 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M1+M2+M3+M4)-GFP
YJZ1103 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M2+M3+M4+M5)-GFP
YJZ1104 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M3+M4+M5+M6)-GFP
YJZ1105 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M4+M5+M6+M7)-GFP
YJZ1106 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M1+M2+M3+M4)-GFP
YJZ1107 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M2+M3+M4+M5+M6+M7)-GFP
YJZ1108 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M3+M4+M5)-GFP
YJZ1230 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N)-GFP
YJZ1231 DJ01 ste2△ SH69 trp::TRP1-p1k-Insert-I7N-Ste2-GFP
YJZ1232 DJ01 ste2△ SH69 trp::TRP1-p1k-I7N-ste2-GFP
YJZ1233 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL1)-GFP
YJZ1234 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL2)-GFP
YJZ1235 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL3)-GFP
YJZ1236 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1)-GFP
YJZ1237 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2)-GFP
YJZ1238 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3)-GFP
YJZ1239 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7C)-GFP
YJZ1240 DJ01 ste2△ trp::TRP1-p1k-Ste2-GFP
菌株名称 基因型
YJZ1241 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17N)-GFP
YJZ1242 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL1)-GFP
YJZ1243 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL2)-GFP
YJZ1244 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL3)-GFP
YJZ1245 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL1)-GFP
YJZ1246 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2)-GFP
YJZ1247 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL3)-GFP
YJZ1248 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17N,17C)-GFP
YJZ1257 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP
YJZ1258 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP
YJZ1259 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP
YJZ1260 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP
YJZ1261 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL1,I7C)-GFP
YJZ1262 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL2,I7C)-GFP
YJZ1263 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL3,I7C)-GFP
YJZ1264 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17N,I7C)-GFP
YJZ1265 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL1,I7C)-GFP
YJZ1266 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP
YJZ1267 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL3,I7C)-GFP
YJZ1268 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL1,I7C)-GFP
YJZ1269 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL2,I7C)-GFP
YJZ1270 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL3,I7C)-GFP
YJZ1271 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-Snf7-mCherry
YJZ1272 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-Vph1-mCherry
YJZ1273 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-Chs5-mCherry
YJZ1274 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-Anp1-mCherry
YJZ1275 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-mCherry-HDEL
YJZ1276 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-Vph1-mCherry
YJZ1277 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1278 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1279 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-Anp1-mCherry
YJZ1280 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1281 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1282 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1283 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP ura::URA3-Anp1-mCherry
YJZ1284 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1285 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1286 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1287 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP ura::URA3-Anp1-mCherry
菌株名称 基因型
YJZ1288 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1289 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1290 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1291 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP ura::URA3-Anp1-mCherry
YJZ1292 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1293 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL3,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1294 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1295 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1296 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-Vph1-mCherry
YJZ1297 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1298 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-Anp1-mCherry
YJZ1299 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL2,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1300 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL1,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1301 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17N,17C)-GFP ura::URA3-mCherry-HDEL
YJZ1302 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL3,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1303 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL3,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1304 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL1,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1305 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL2,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1306 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL1,I7C)-GFP ura::URA3-mCherry-HDEL
表1  本文所用到的菌株
图1  Ste2在酵母细胞中亚细胞定位情况
图2  Ste2的结构
删除部分 对应删除的氨基酸
ΔN Δ2~47
ΔC Δ301~431
ΔM( 1+2 ) Δ49~103
ΔM( 2+3 ) Δ80~153
ΔM( 3+4 ) Δ130~189
ΔM( 4+5 ) Δ166~230
ΔM( 5+6 ) Δ207~269
ΔM( 6+7 ) Δ246~299
表2  跨膜域删除突变体列表
I7替换 OR17替换
I7N-ste2 (I7N替换Ste2N) OR17N-ste2
ste2(I7-EL1) ste2(OR17-EL1)
ste2(I7-EL2) ste2(OR17-EL2)
ste2(I7-EL3) ste2(OR17-EL3)
ste2(I7-IL1) ste2(OR17-IL1)
ste2(I7-IL2) ste2(OR17-IL2)
ste2(I7-IL3) ste2(OR17-IL3)
ste2(I7C) ste2(OR17C)
表3  单结构域替换突变体列表
图3  Ste2末端及跨膜域缺失突变体亚细胞定位情况
I7替换 OR17替换
I7N-ste2(I7C) OR17N-ste2(OR17C)
ste2(I7-EL1, I7C) ste2(OR17-EL1, OR17C)
ste2(I7-EL2, I7C) ste2(OR17-EL2, OR17C)
ste2(I7-EL3, I7C) ste2(OR17-EL3, OR17C)
ste2(I7-IL1, I7C) ste2(OR17-IL1, OR17C)
ste2(I7-IL2, I7C) ste2(OR17-IL2, OR17C)
ste2(I7-IL3, I7C) ste2(OR17-IL3, OR17C)
表4  Loop环和C端双替换突变体列表
图4  I7和OR17 胞内外环状结构替换定位情况
图5  C端替换基础上替换其他结构域对Ste2亚细胞定位的影响
图6  I7和OR17结构域双替换突变体与细胞器标记的共定位验证
质粒 质膜 晚期内体 晚高尔基体 早高尔基体 液泡 内质网
Ste2-GFP 有质膜信号 6.38% 不共定位 不共定位 共定位 不共定位
I7N-ste2(I7C) 质膜信号极弱 13.92% 无共定位信号 1.35% 28.13% 共定位
ste2(I7-EL1, I7C) 质膜信号弱 28.13% 无共定位信号 无共定位信号 共定位 共定位
ste2(I7-EL2, I7C) 无质膜信号 无共定位信号 无共定位信号 无共定位信号 共定位 共定位,且ER
上有点状信号
ste2(I7-EL3, I7C) 无质膜信号 无共定位信号 无共定位信号 无共定位信号 无共定位信号 共定位
ste2(I7-IL1, I7C) 有质膜信号 无共定位信号 无共定位信号 无共定位信号 无共定位信号 共定位
ste2(I7-IL2, I7C) 有质膜信号 无共定位信号 无共定位信号 无共定位信号 无共定位信号 共定位
ste2(I7-IL3, I7C) 无质膜信号 无共定位信号 无共定位信号 无共定位信号 7.17% 共定位
表5  I7双替换突变体共定位结果
Ste2-GFP 质膜 内质网
OR17N-ste2(OR17C) 无质膜信号 共定位
ste2(OR17-EL1, OR17C) 无质膜信号 共定位
ste2(OR17-EL2, OR17C) 无质膜信号 共定位,且ER上有点状信号
ste2(OR17-EL3, OR17C) 有质膜信号 有共定位
ste2(OR17-IL1, OR17C) 有质膜信号 有共定位
ste2(OR17-IL2, OR17C) 有质膜信号 有共定位
ste2(OR17-IL3, OR17C) 无质膜信号 共定位
表6  OR17双替换突变体共定位结果
[1] Fukutani Y, Ishii J, Kondo A , et al. Split luciferase complementation assay for the analysis of G protein‐coupled receptor ligand response in Saccharomyces cerevisiae. Biotechnology & Bioengineering, 2017,114(6):1354.
doi: 10.4014/jmb.1910.10055 pmid: 31838832
[2] Kristiansen K . Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther, 2004,103(1):21-80.
doi: 10.1016/j.pharmthera.2004.05.002 pmid: 15251227
[3] Stoneman M R, Paprocki J D, Biener G , et al. Quaternary structure of the yeast pheromone receptor Ste2 in living cells.Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016,1859(9):1456-1464.
doi: 10.1016/j.bbamem.2016.12.008 pmid: 27993568
[4] Cevhero?lu O, Kumas G, Hauser M , et al. The yeast Ste2p G protein-coupled receptor dimerizes on the cell plasma membrane.Biochimica et Biophysica Acta (BBA) - Biomembranes, 2017,1859(5):698-711.
doi: 10.1016/j.bbamem.2017.01.008 pmid: 28073700
[5] Naider F, Becker J M . The α-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides, 2004,25(9):1441-1463.
doi: 10.1016/j.peptides.2003.11.028
[6] Bardwell L . A walk-through of the yeast mating pheromone response pathway. Peptides, 2004,25(9):1465-1476.
doi: 10.1016/j.peptides.2003.10.022
[7] Alvaro C G, Thorner J . Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response. Journal of Biological Chemistry, 2016,291(15):7788-7795.
doi: 10.1074/jbc.R116.714980 pmid: 26907689
[8] Choudhary P, Loewen M C . Quantification of mutation-derived bias for alternate mating functionalities of the Saccharomyces cerevisiae Ste2p pheromone receptor. Journal of Biochemistry, 2016,159(1):49-58.
doi: 10.1093/jb/mvv072 pmid: 26232403
[9] Uddin M S, Naider F, Becker J M . Dynamic roles for the N-terminus of the yeast G protein-coupled receptor Ste2p. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2017,1859(10):2058-2067.
doi: 10.1016/j.bbamem.2017.07.014 pmid: 28754538
[10] Harley C A, Tipper D J . The Role of charged residues in determining transmembrane protein insertion orientation in yeast. Journal of Biological Chemistry, 1996,271(40):24625-24633.
doi: 10.1074/jbc.271.40.24625 pmid: 8798728
[11] Fukuda N, Kaishima M, Ishii J , et al. Positive detection of GPCR antagonists using a system for inverted expression of a fluorescent reporter gene. ACS Synthetic Biology, 2017,6(8):1554-1562.
doi: 10.1021/acssynbio.7b00056 pmid: 28499341
[12] Zecchin A, Stapor P C, Goveia J , et al. Metabolic pathway compartmentalization: an underappreciated opportunity. Curr Opin Biotechnol, 2015,34(34C):73-81.
doi: 10.1016/j.copbio.2014.11.022 pmid: 25499800
[13] Casad V, Corts A, Mallol J , et al. GPCR homomers and heteromers: A better choice as targets for drug development than GPCR monomers. Pharmacology & Therapeutics, 2009,124(2):248-257.
doi: 10.1007/s12035-019-01849-6 pmid: 31838720
[14] Rivero-Muller A, Chou Y Y, Ji I , et al. Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proceedings of the National Academy of Sciences, 2010,107(5):2319-2324.
[15] Uddin M S, Kim H, Deyo A , et al. Identification of residues involved in homodimer formation located within aβ-strand region of the N-terminus of a yeast G protein-coupled receptor. Journal of Receptor & Signal Transduction Research, 2012,32(2):65.
doi: 10.4014/jmb.1910.10055 pmid: 31838832
[16] Radhika V, Proikascezanne T, Jayaraman M , et al. Chemical sensing of DNT by engineered olfactory yeast strain. Nature Chemical Biology, 2007,3(6):325.
doi: 10.1038/nchembio882 pmid: 17486045
[17] Fukutani Y, Nakamura T, Yorozu M , et al. The N-terminal replacement of an olfactory receptor for the development of a yeast-based biomimetic odor sensor. Biotechnology and Bioengineering, 2012,109(1):205-212.
doi: 10.1002/bit.23327
[18] Minic J, Persuy M A, Godel E , et al. Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS Journal, 2005,272(2):524-537.
doi: 10.1111/j.1742-4658.2004.04494.x pmid: 15654890
[19] Seraj Uddin M, Hauser M, Naider F , et al. The N-terminus of the yeast G protein-coupled receptor Ste2p plays critical roles in surface expression, signaling, and negative regulation. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016,1858(4):715-724.
doi: 10.1016/j.bbamem.2015.12.017 pmid: 26707753
[20] Kim K M, Lee Y H, Akal-Strader A , et al. Multiple regulatory roles of the carboxy terminus of Ste2p a yeast GPCR. Pharmacological Research, 2011,65(1):31-40.
doi: 10.1016/j.phrs.2011.11.002 pmid: 22100461
[21] Zuber J, Danial S A, Connelly S M , et al. Identification of destabilizing and stabilizing mutations of Ste2p, a G protein-coupled receptor in Saccharomyces cerevisiae. Biochemistry, 2015,54(9):1787-1806.
doi: 10.1021/bi501314t pmid: 25647246
[22] Gastaldi S, Zamboni M, Bolasco G , et al. Analysis of random PCR-originated mutants of the yeast Ste2 and Ste3 receptors. Microbiologyopen, 2016,5(4):670-686.
doi: 10.1002/mbo3.361 pmid: 27150158
[23] Sridharan R, Connelly S M, Naider F , et al. Variable dependence of signaling output on agonist occupancy of Ste2p, a G protein coupled receptor in yeast. Journal of Biological Chemistry, 2016,29(46):24261-24279.
doi: 10.1074/jbc.M116.733006 pmid: 27646004
[1] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 朱航志,蒋珊,陈丹,刘鹏阳,万霞. 引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成*[J]. 中国生物工程杂志, 2021, 41(4): 37-46.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 陈莹,李谦. 特殊酵母工业应用专利发展态势分析[J]. 中国生物工程杂志, 2021, 41(4): 91-99.
[6] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[7] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[8] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[9] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[10] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[11] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[12] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[13] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[14] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[15] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.