Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (12): 27-33    DOI: 10.13523/j.cb.20171206
研究报告     
异源表达CiRS基因通过生成白藜芦醇增强拟南芥的抗氧化能力 *
杨飞芸1,2,武燕燕2,崔爽1,张秀娟3,王瑞刚1,李国婧1()
1 内蒙古农业大学生命科学学院 呼和浩特 010018
2 内蒙古农业大学食品科学与工程学院 呼和浩特 010018
3 内蒙古自治区生物技术研究院 呼和浩特 010070
Heterologous Expression of CiRS Gene Eenhances the Antioxidant Capacity of Arabidopsis by Increasing the Content of Resveratrol
Fei-yun YANG1,2,Yan-yan WU2,Shuang CUI1,Xiu-juan ZHANG3,Rui-gang WANG1,Guo-jing LI1()
1 College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
2 College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
3 Inner Mongolia Autonomous Region Biotechnology Research Institute, Hohhot 010070, China
 全文: PDF(823 KB)   HTML
摘要:

白藜芦醇是一种具有多种医疗保健作用的植物芪类次生代谢产物,在农业、医药、食品和化妆品等领域受到广泛的关注。白藜芦醇合酶是白藜芦醇生物合成中唯一必需的关键酶,决定植物体内白藜芦醇的合成。将中间锦鸡儿中克隆到的CiRS基因(GenBank登录号MF678590)转入野生型拟南芥,实验结果显示:野生型的总黄酮含量明显高于转基因株系。HPLC测得转基因拟南芥中有白藜芦醇的生成,并且含量最高达335μg/g FW。紫外照射处理后转基因植物中丙二醛的积累量明显少于野生型。转基因植物提取物DPPH自由基清除能力均高于野生型。这些结果表明,中间锦鸡儿CiRS基因异源表达后利用与黄酮类物质的共同底物合成了白藜芦醇,使得转基因植物的抗氧化性增强。

关键词: 白藜芦醇合酶中间锦鸡儿白藜芦醇转基因拟南芥    
Abstract:

Resveratrol is a member of stilbenoids with disease resistant activity for plants and exhibits a wide range of important biological and pharmacological properties for human which has received extensive attention in the fields of agriculture, medicine, foods, cosmetics and so on. Resveratrol synthase (RS) is an exclusive necessary enzyme in the pathway of resveratrol biosynthesis which determines the synthesis of resveratrol in plants. CiRS, a RS gene isolated from Caragana intermedia, was transferred into Arabidopsis. Total flavonoids experimental results showed that the total flavonoids content of wild type was significantly higher than that of the transgenic lines. HPLC method was used to analyze the resveratrol content in transgenic plants which maximum content was 335μg/g FW. Accumulation of malondialdehyde (MDA) after UV treatment in transgenic plants was significantly less than the wild type. DPPH free radical scavenging ability of transgenic plants extraction was higher than the wild type. Taken together, these results indicated that the antioxidant activity of transgenic plants was enhanced with the expression of CiRS gene which synthesise resveratrol with flavonoid substrates.

Key words: Resveratrol synthase    Caragana intermedia    Resveratrol    Transgenic    Arabidopsis
收稿日期: 2017-08-24 出版日期: 2017-12-16
ZTFLH:  Q786  
基金资助: 内蒙古自治区自然科学基金项目(2017MS0354);内蒙古自治区科技创新团队计划(201503004)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨飞芸
武燕燕
崔爽
张秀娟
王瑞刚
李国婧

引用本文:

杨飞芸,武燕燕,崔爽,张秀娟,王瑞刚,李国婧. 异源表达CiRS基因通过生成白藜芦醇增强拟南芥的抗氧化能力 *[J]. 中国生物工程杂志, 2017, 37(12): 27-33.

Fei-yun YANG,Yan-yan WU,Shuang CUI,Xiu-juan ZHANG,Rui-gang WANG,Guo-jing LI. Heterologous Expression of CiRS Gene Eenhances the Antioxidant Capacity of Arabidopsis by Increasing the Content of Resveratrol. China Biotechnology, 2017, 37(12): 27-33.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171206        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I12/27

图1  pCanG-CiRS表达载体
图2  CiRS转基因株系表达水平检测
图3  野生型和转CiRS基因拟南芥总黄酮含量比较
图4  拟南芥各株系白藜芦醇色谱图
株系名 WT OE-1 OE-16 OE-17
含量(μg/g FW) 未检出 329 313 335
表1  拟南芥各株系白藜芦醇含量
图5  拟南芥各株系MDA含量变化
图6  拟南芥各株系DPPH自由基的清除率
图7  Trolox对DPPH自由基清除率标准曲线
[1] Delaunois B, Cordelier S, Conreux A , et al. Molecular engineering of resveratrol in plants. Plant Biotechnology Journal, 2009,7(1):2-12.
doi: 10.1111/j.1467-7652.2008.00377.x pmid: 19021877
[2] Huang H, Lu J, Hunter W . Comparative analysis of stilbene synthase genes among Vitis Species. Acta Horticulturae, 2007, ( 738):755-758.
doi: 10.17660/ActaHortic.2007.738.100
[3] Pan Q H, Wang L, Li J M . Amounts and subcellular localization of stilbene synthase in response of grape berries to UV irradiation. Plant Science, 2009,176(3):360-366.
doi: 10.1016/j.plantsci.2008.12.004
[4] Yu C K, Lam C N, Springob K . Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a sorghum stilbene synthase gene. Plant Cell Physiology, 2006,47(7):1017-1021.
doi: 10.1093/pcp/pcj061
[5] Lu Y, Shao D Y, Shi J L , et al. Strategies for enhancing resveratrol production and the expression of pathway enzymes. Applied Microbiology and Biotechnology, 2016,100(17):7407-7421.
doi: 10.1007/s00253-016-7723-1 pmid: 27405437
[6] Chong J L, Poutaraud A, Hugueney P . Metabolism and roles of stilbenes in plants. Plant Science, 2009,177(3):143-155.
doi: 10.1016/j.plantsci.2009.05.012
[7] Raiber S, Schr?der G, Schr?der J . Molecular and enzymatic characterization of two stilbene synthases from Eastern white pine(Pinus strobus). FEBS Letters, 1995,361(2):299-302.
doi: 10.1016/0014-5793(95)00199-J
[8] Yu C K, Springob K, Schmidt J , et al. A stilbene synthase gene (SbSTS1) is involved in host and nonhost defense responses in sorghum. Plant Physiology, 2005,138(1):393-401.
doi: 10.1104/pp.105.059337 pmid: 15821144
[9] Hain R, Bieseler B, Kindl H , et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Molecular Biology, 1990,15(2):325-335.
doi: 10.1007/BF00036918 pmid: 2103451
[10] Hain R, Reif H J, Krause E , et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 1993,361(6408):153-156.
doi: 10.1038/361153a0
[11] Liu Z Y, Zhuang C X, Sheng S J , et al. Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. Plant Cell Reports, 2011,30(11):2027-2036.
doi: 10.1007/s00299-011-1110-2 pmid: 21717185
[12] Zheng X, Shi J, Yu Y , et al. Exploration of elite stilbene synthase alleles for resveratrol concentration in wild Chinese Vitis spp. and Vitis cultivars. Frontiers in Plant Science, 2017,8(130):1-12.
doi: 10.3389/fpls.2017.00487 pmid: 5383651
[13] Yang Q, Yin J J, Li G , et al. Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions. Molecular Biology Reports, 2014,41(4):2325-2334.
doi: 10.1007/s11033-014-3086-9 pmid: 24452712
[14] Xiao S C, Xiao H L, Peng X M , et al. Dendroecological assessment of Korshinsk peashrub ( Caragana korshinskii Kom.) from the perspective of interactions among growth, climate, and topography in the western Loess Plateau, China. Dendrochronologia, 2015,33(1):61-68.
doi: 10.1016/j.dendro.2015.01.001
[15] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium - mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998,16(6) : 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[16] Chukwumah Y, Walker L T, Verghese M . Peanut skin color: abiomarker for total polyphenolic content and antioxidative capacities of peanut cultivars. International Journal of Molecular Sciences, 2009,10(11):4941-4952.
doi: 10.3390/ijms10114941 pmid: 2808014
[17] Thaiponga K, Boonprakob U, Crosby K , et al. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 2006,19(7):669-675.
doi: 10.1016/j.jfca.2006.01.003
[18] WangW, TangK, YangHR, et al. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiology & Biochemistry, 2010,48(2-3):142-152.
doi: 10.1016/j.plaphy.2009.12.002 pmid: 20060310
[19] Rimando A M, Pan Z Q, Polashock J J , et al. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. Plant Biotechnology Journal, 2012,10(3):269-283.
doi: 10.1111/j.1467-7652.2011.00657.x pmid: 21902799
[20] Fischer R, Budde I, Hain R . Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. The Plant Journal, 1997,11(3):489-498.
doi: 10.1046/j.1365-313X.1997.11030489.x
[21] Kiselev K V, Aleynova OA . Influence of overexpression of stilbene synthase VaSTS7 gene on resveratrol production in transgenic cell cultures of grape Vitis amurensis Rupr. Applied Biochemistry and Microbiology, 2016,52(1):68-73.
doi: 10.1134/S0003683815060071
[22] Fan C H, Pu N, Wang X P , et al. Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Culture, 2008,92(2):197-206.
doi: 10.1007/s11240-007-9324-2
[23] Tang K, Zhan J C, Yang H R , et al. Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. Journal of Plant Physiology, 2010,167(2):95-102.
doi: 10.1016/j.jplph.2009.07.011 pmid: 19716623
[24] Pareek A, Sopory S K, Bohnert H J , et al. Abiotic Stress Adaptation in Plants. Berlin: Springer Press, 2010. 91-102.
[1] 杨飞芸,杨天瑞,刘坤,崔爽,王瑞刚,李国婧. 异源表达CiRS基因拟南芥的黄酮代谢及抑菌能力研究 *[J]. 中国生物工程杂志, 2019, 39(11): 22-30.
[2] 杨天瑞,李娜,张秀娟,杨杞,王瑞刚,李国婧. 中间锦鸡儿CibHLH027基因的克隆和功能研究*[J]. 中国生物工程杂志, 2018, 38(3): 33-40.
[3] 刘坤,崔爽,杨飞芸,韩晓东,王瑞刚,张子义. 中间锦鸡儿CCR2CCR3基因的克隆和功能鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 18-29.
[4] 柴文娟,杨杞,李国婧,王瑞刚. 中间锦鸡儿CiMYB15基因正调控拟南芥黄酮代谢 *[J]. 中国生物工程杂志, 2018, 38(10): 8-19.
[5] 韩晗, 包旦奇, 杨飞芸, 刘坤, 杨天瑞, 杨杞, 李国婧, 王瑞刚. 中间锦鸡儿CiCHIL克隆及其黄酮代谢功能研究[J]. 中国生物工程杂志, 2016, 36(9): 11-20.
[6] 万永青, 杨洋, 张春林, 万东莉, 杨爱琴, 杨杞, 王瑞刚, 李国婧. 中间锦鸡儿DHN1基因克隆及表达分析[J]. 中国生物工程杂志, 2016, 36(4): 88-96.
[7] 于秀敏, 岳文冉, 张燕娜, 杨飞芸, 王瑞刚, 李国婧, 杨杞. 异源表达CkLEA1基因增强了拟南芥对非生物胁迫的耐受性[J]. 中国生物工程杂志, 2016, 36(10): 28-34.
[8] 汪建峰, 张嗣良, 王勇. 大肠杆菌中从头合成白藜芦醇途径的设计及优化[J]. 中国生物工程杂志, 2014, 34(2): 71-77.