Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (6): 105-110    
综述     
酿酒酵母乙醇耐受性的研究进展
刘石雪1, 王乔平1,2, 唐丽薇1, 严金平1, 伊日布斯1
1. 昆明理工大学生命科学与技术学院生物转化实验室 昆明 650500;
2. 曲靖市动物疫病预防控制中心 曲靖 655000
Advances in Research on Ethanol Tolerance of Saccharomyces cerevisiae
LIU Shi-xue1, WANG Qiao-ping1,2, TANG Li-wei1, YAN Jin-ping1, Chagan Irbsi1
1. Laboratory of Bioconvertion, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
2. Qujing Center for Animal Disease Control and Prevention, Qujing 655000, China
 全文: PDF(392 KB)   HTML
摘要:

生物乙醇作为一种可再生的清洁能源,正在引起人们的广泛关注。酿酒酵母是乙醇生产中最常用的发酵菌株,但是乙醇耐受性往往成为限制酿酒酵母菌乙醇产量的重要因素。选育耐受高浓度乙醇的酵母菌株对于提高乙醇产率具有重要意义。然而传统的菌株改良方法具有育种周期长,突变方向不定等缺点。主要综述了近年来国内外对酿酒酵母菌耐受乙醇的分子生物学机理方面的研究成果,进而总结了提高酿酒酵母乙醇耐受性的基因工程、代谢工程。

关键词: 酿酒酵母乙醇耐受性基因工程    
Abstract:

Bioethanol as a renewable clean energy is causing widespread concern. Saccharomyces cerevisiae is the most commonly strains in the production of ethanol, but ethanol tolerance often become the most important factors that limit the Saccharomyces cerevisiae ethanol production.Improvement of ethanol tolerance of yeast cells is beneficial for ethanol production. However, traditional breeding methods have many shortcomings, such as long breeding cycle, variable mutation direction and so on. Recent research results about S. cerevisiae molecular mechanisms of tolerance to ethanol were reviewed, and the genetic engineering, metabolic engineering to improve S. cerevisiae ethanol tolerance was summarized.

Key words: Saccharomyces cerevisiae    Ethanol tolerance    Genetic engineering
收稿日期: 2013-03-06 出版日期: 2013-06-25
ZTFLH:  Q819  
通讯作者: 伊日布斯     E-mail: irbisc@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘石雪
王乔平
唐丽薇
严金平
伊日布斯

引用本文:

刘石雪, 王乔平, 唐丽薇, 严金平, 伊日布斯. 酿酒酵母乙醇耐受性的研究进展[J]. 中国生物工程杂志, 2013, 33(6): 105-110.

LIU Shi-xue, WANG Qiao-ping, TANG Li-wei, YAN Jin-ping, Chagan Irbsi. Advances in Research on Ethanol Tolerance of Saccharomyces cerevisiae. China Biotechnology, 2013, 33(6): 105-110.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I6/105

[1] Teixeira M C, Raposo L R, Mira N P, et al. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol, 2009, 75(18):5761-5772.
[2] Ding J, Huang X, Zhao N, et al. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2009, 85(2):253- 263.
[3] Costa V, Reis E, Quintanilha A, et al. Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase. Arch Biochem Biophys, 1993, 300(2):608-614.
[4] Du X, Takagi H. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.Appl Microbiol Biotechnol, 2007, 75(6):1343-1351.
[5] Aguilera F, Peinado R A, Millán C,et al. Relationship between ethanol tolerance, H-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol, 2006, 110(1):34-42.
[6] Chi Z, Arneborg N. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol, 1999, 86(6):1047-1052.
[7] You K M, Rosenfield C L, Knipple D C. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol, 2003, 69(3):1499-1503.
[8] Monteiro G A, Sá-Correia I. In vivo activation of yeast plasma membrane H-ATPase by ethanol: effect on the kinetic parameters and involvement of the carboxyl-terminus regulatory domain. Biochim Biophys Acta, 1998, 1370(2):310-316.
[9] Salgueiro S P, Sá-Correia I, Novais J M. Ethanol-induced leakage in Saccharomyces cerevisiae: kinetics and relationship to yeast etha-nol tolerance and alcohol fermentation productivity. Appl Environ Microbiol, 1998, 54(4):903-909.
[10] Yang K M, Lee N R, Woo J M, et al. Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Res, 2012, 12(6):675-684.
[11] 彭源德,朱作华,唐守伟,等. 耐高温、高浓度酒精酵母的选育与耐受性能初步鉴定.中国亚麻科学,2010,32(3):0135-0141. Peng D Y, Zhu Z H, Tang S W. et al. Breeding and preliminary identification of thermotolerant and ethanol endurant yeast strains. Plant Fiber Sciences in China, 2010,32(3):0135-0141.
[12] 陆筑凤, 李超,王昌禄,等. Genome shuffling技术选育高耐性酿酒酵母. 酿酒科技, 2008, 7:0023-0026. Lu Z F, Li C, Wang C L, et al. Breeding of Saccharomyces cerevisiae with high temperature and ethanol tolerance by genome shuffling techniques. Liquor-marking Science and Technology, 2008, 7:0023-0026.
[13] Tao X, Zheng D, Liu T, et al. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One, 2012, 7(2):e31235.
[14] Winzeler E A, Shoemaker D D, Astromoff A, et al. Functional characterization of the S.cervisiae genome by gene deletion and parallel analysis. Science,1999, 285(5429):901-907.
[15] 张秋美, 赵心清, 姜如娇, 等. 酿酒酵母乙醇耐性的分子机制及基因工程改造. 生物工程学报, 2009, 25(4):481-487. Zhang Q M, Zhao X Q, Jiang R J,et al. Ethanol tolerance in yeast: molecular mechanisms and genetic engineering. Chinese Journal of Biotechnology,2009, 25(4): 481-487.
[16] Ogawa Y, Nitta A, Uchiyama H, et al. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng,2000, 90(3):313-333.
[17] Kaino T, Takagi H. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol, 2008, 79(2):273-283.
[18] An M Z, Tang Y Q, Mitsumasu K, et al. Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol Lett, 2011, 33(7):1367-1374.
[19] Li Q, Zhao X Q, Chang A K, et al. Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab Eng, 2012, 14(1):1-8.
[20] Alexandre H, Ansanay G V, Dequin S, et al. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett, 2001, 498(1):98-103.
[21] Moon M H, Ryu J, Choeng Y H, et al. Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus. Biotechnology and Bioprocess Engineering, 2012,17(9): 986-996.
[22] Ogawa Y, Nitta A, Uchiyama H, et al. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng,2000, 90(3):313-320.
[23] Vanegas J M, Contreras M F, Faller R, et al. Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J, 2012, 102(3):507-516.
[24] Kubota S, Takeo I, Kume K, et al. Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem, 2004, 68(4):968-972.
[25] Ma M, Liu Z L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2010, 87(3):829- 845.
[26] 张穗生, 黄日波, 周兴, 等. 酿酒酵母乙醇耐受性机理研究进展. 微生物学报,2009, 36(10):1604-1608. Zhang H S, Huang R B, Zhou X, et al. Advances in research on the mechanisms of Saccharomyces cerevisiae ethanol tolerance.Microbiology, 2009, 36(10):1604-1608.
[27] Shin G H, Veen M, Stahl U, et al. Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. Yeast, 2012, 29(9):371-383.
[28] Dinh T N, Nagahisa K, Hirasawa T, et al. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. Plos One, 2008, 3 (7): e2623.
[29] Kajiwara S, Suga K, Sone H, et a1. Improved ethanol tolerance of Saccharomy cescerevisiae strains by increases in fattyacid unsaturation via metabolic engineering. Biotechnol Lett, 2000, 22(1):1839- 1843.
[30] Martin C E, Oh C S, Jiang Y. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta, 2007, 1771(13):271-285.
[31] Sanchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol, 2008, 99(13):5270-5295.
[32] Samuel D, Kumar T K, Ganesh G, et al. Proline inhibits aggregation during protein refolding. Protein Sci, 2000, 9(2):344- 352.
[33] Takagi H, Takaoka M, Kawaguchi A,et al. Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol,2005, 71(12):8656-8662.
[34] Yoshikawa K, Tanaka T, Furusawa C,et al. Comprehensive phenotypic analys is for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res, 2009, 9(1):32-44.
[35] Hirasawa T, Yoshikawa K, Nakakura Y, et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol, 2007, 131(1):34-44.
[36] Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol, 2007, 8(11): 917-929.
[37] Kim H, Kim A, Cunningham K W.Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem, 2012, 287(23):19029-19039.
[38] Kane P M. The long physiological reach of the yeast vacuolar H+-ATPase, J Bioenerg Biomembr, 2007, 39(5): 415-421.
[39] Martínez-Muñoz G A, Kane P. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem, 2008, 283(29):20309-20319.
[40] Benlekbir S, Bueler S A, Rubinstein J L. Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-Å resolution. Nat Struct Mol Biol, 2012, 19(12):1356-1362.
[41] Ishimoto M, Sugimoto N, Sekito T, et al. ATP-dependent export of neutral amino acids by vacuolar membrane vesicles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem, 2012, 76(9):1802-1806.
[42] Auesukaree C, Damnernsawad A, Kruatrachue M, et al. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet, 2009, 50(3),301-310.
[43] Teixeira M C, Mira N P, Sá-Correia I. A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae.Curr Opin Biotechnol, 2011, 22(2):150-156.
[44] Madeira A, Leitao L, Soveral G,et al. Effect of ethanol on fluxes of water and protons across the plasma membrane of Saccharomyces cerevisiae. FEMS Yeast Res, 2010, 10(3):252-260.
[45] Mira N P, Teixeira M C, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS, 2010,14 (5):525-540.
[46] Hasegawa S, Ogata T, Tanaka K, et al. Overexpression of vacuolar H+-ATPase-related genes in bottom-fermenting yeast enhances ethanol tolerance and fermentation rates during high-gravity fermentation. J Inst Brew, 2012, 118(1):179-185.
[47] Voorst V F, Houghton L J, Jonson L, et al. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast, 2006, 23(5): 351-359.
[48] Betz C, Schlenstedt G, Bailer S M. Asr1p, a novel yeast ring/PHD finger protein, signals stress to nucleus. J Biochem, 2004, 279 (27): 28174-28181.
[49] Ding J, Huang X, Zhao N, et al. Response of Saccharomyces cerevisiae to ethanol stress involves actions of protein asr1p. J Microbiol Biotechnol, 2010, 20 (12):1630-1636.
[50] Watson K, Cavicchioli R. Acquisition of ethanol tolerance in yeast cells by heat shock. Biotechnology Letters, 1983, 5(6):683-688.
[51] Alper H, Stephanopoulos G. Global transcription machinery engineering: A new approach for improving cellular phenotype. Metab Eng, 2007, 9(2):258-267.
[52] 乔志新, 于群. 全局转录调控及其在代谢工程中的应用. 生物技术通讯, 2009, 20(5):689-691. Qiao Z X, Yu Q. Application of global transcription machinery engineering in metabolic engineering. Letters in Biotechnology, 2009, 20(5):689-691.
[53] 赵心清, 姜如娇, 李宁, 等. SPT3定向进化提高酿酒酵母乙醇耐性的研究.生物工程学报,2010,26(2):159-164. Zhao X Q, Jiang R J, Li N, et al. Directed evolutionof SPT3 to improve ethanol tolerance of Saccharomyces cerevisiae. Chinese Journal of Biotechnology, 2010, 26(2):159-164.

[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[5] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[6] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[7] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[8] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[9] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[10] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[11] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[12] 马淑霞,张玲,闫晋飞,游松. 裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *[J]. 中国生物工程杂志, 2018, 38(9): 27-34.
[13] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[14] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[15] 陶宇,李高建,舒建洪,吴月红,杨芳,何玉龙. 猪支原体肺炎基因工程疫苗的研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 95-101.