Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (6): 111-116    
医药生物技术专栏     
用于重组抗体生产的细胞构建技术研究进展
刘伯宁
华北制药集团新药研究开发有限责任公司 抗体药物研制国家重点实验室 石家庄 050015
The Technology Progress of Antibody-producing Cell Line Development
LIU Bo-ning
New Drug Reaserch and Development Center, North China Pharmaceutical Group Corporation and State Key Laboratory of Antibody Drug Reaserch and Development, Shijiazhuang 050015, China
 全文: PDF(453 KB)   HTML
摘要:

构建生产细胞系是重组抗体产业化制备的第一步。目前国际上用于重组抗体生产的工程细胞系表达水平可达20~70pcd。多种动物细胞根据其特性的不同,在抗体药物生产中有着不同的应用。近年来,工程细胞系构建技术的研究进展主要集中在以下三个方面:利用细胞工程技术提高宿主的生长、表达能力,新型载体功能元件和定点整合技术克服载体随机整合时发生的"位置效应",以及应用流式细胞分选术和高通量筛选机器提高重组细胞的筛选通量和效率。

关键词: 重组抗体细胞构建载体元件筛选策略    
Abstract:

The commercial therapeutic antibodies manufacturing began with construction of antibody-producing cell line, and the productivity of engineering cell line for antibody expression has reached 20~70pg/cell/day at present. Many industrial cases of various animal cell lines as host cell were summarized, accounting to their different attributes. Furthermore, the latest technology progression of cell line developments was introduced, as follows: Cell engineering technology ensured the host cell with robust growth and high productivity; The New vector element and site-directed integration technology contribute to overcoming the "position effection" by random integration. Lastly, the application of cell-sorting by flow cytometer and automatic screening device have remarkably improved the efficient and throughout of recombinant cell line screening, etc. Additionally, the phenotypic variation and instability of cell line and the technological trend in this field are also discussed.

Key words: Recombinant antibody    Cell line development    Vector construction    Screening strategy
收稿日期: 2013-02-04 出版日期: 2013-06-25
ZTFLH:  Q819  
基金资助:

国家"973"计划资助项目(2012CB724502)

通讯作者: 刘伯宁     E-mail: liuboning801@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘伯宁

引用本文:

刘伯宁. 用于重组抗体生产的细胞构建技术研究进展[J]. 中国生物工程杂志, 2013, 33(6): 111-116.

LIU Bo-ning. The Technology Progress of Antibody-producing Cell Line Development. China Biotechnology, 2013, 33(6): 111-116.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I6/111

[1] Jostock T. Expression of antibody in mammalian cells. Antibody Expression and Production, 2011, 7: 1-24.
[2] 刘伯宁. 治疗性抗体与抗体产业关键技术. 中国生物工程杂志, 2013,33(5):132-138. Liu B N. The progress of therapeutic antibody drug and the industrial key-technology of antibody production. China Biotechnoloty, 2013,33(5):132-138.
[3] Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nature Biotechnology, 2006, 24(10): 1241-1252.
[4] Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: An assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnology Progress, 2012, 28(3): 608-622.
[5] Schirrmann T, Al-Halabi L, Dubel S, et al. Production systems for recombinant antibodies. Front Biosci, 2008, 13:4576-4594.
[6] Chartrain M, Chu L. Development and production of commercial therapeutic monoclonal antibodies in mammalian cell expression systems: An overview of the current upstream technologies. Current Pharmaceutical Biotechnology, 2008, 9(6): 447-467.
[7] Arnold D F, Misbah S A. Cetuximab-induced anaphylaxis and ige specific for galactose-alpha-1,3-galactose. N Engl J Med, 2008, 358(25):2735-2736.
[8] de la Cruz Edmonds M C, Tellers M, Chan C, et al. Development of transfection and high-producer screening protocols for the chok1sv cell system. Molecular Biotechnology, 2006, 34(2): 179-190.
[9] Porter A J, Racher A J, Preziosi R, et al. Strategies for selecting recombinant cho cell lines for cgmp manufacturing: Improving the efficiency of cell line generation. Biotechnology Progress, 2010, 26(5): 1455-1464.
[10] Porter A J, Dickson A J, Racher A J. Strategies for selecting recombinant cho cell lines for cgmp manufacturing: Realizing the potential in bioreactors. Biotechnology Progress, 2010, 26(5): 1446-1454.
[11] Rita Costa A, Elisa Rodrigues M, Henriques M, et al. Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm, 2009,74(2):127-138.
[12] Fan L, Kadura I, Krebs L E, et al. Improving the efficiency of cho cell line generation using glutamine synthetase gene knockout cells. Biotechnology and Bioengineering, 2012, 109(4): 1007-1015.
[13] Li J, Gu W, Edmondson D G, et al. Generation of a cholesterol-independent, non-gs ns0 cell line through chemical treatment and application for high titer antibody production. Biotechnology and Bioengineering, 2012,109(7):1685-1692.
[14] Rossi D L, Rossi E A, Goldenberg D M, et al. A new mammalian host cell with enhanced survival enables completely serum-free development of high-level protein production cell lines. Biotechnology Progress, 2011, 27(3): 766-775.
[15] Lee S K, Lee G M. Development of apoptosis-resistant dihydrofolate reductase-deficient chinese hamster ovary cell line. Biotechnology and Bioengineering, 2003, 82(7): 872-876.
[16] Vives J, Juanola S, Cairo J J, et al. Metabolic engineering of apoptosis in cultured animal cells: Implications for the biotechnology industry. Metabolic Engineering, 2003, 5(2): 124-132.
[17] Figueroa B, Ailor E, Osborne D, et al. Enhanced cell culture performance using inducible anti-apoptotic genes e1b-19k and aven in the production of a monoclonal antibody with chinese hamster ovary cells. Biotechnology and Bioengineering, 2007, 97(4): 877-892.
[18] Lee Y Y, Wong K T, Tan J, et al. Overexpression of heat shock proteins (hsps) in cho cells for extended culture viability and improved recombinant protein production. Journal of Biotechnology, 2009, 143(1): 34-43.
[19] Tabuchi H, Sugiyama T, Tanaka S, et al. Overexpression of taurine transporter in Chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption. Biotechnology and Bioengineering, 2010, 107(6): 998-1003.
[20] Zhou M, Crawford Y, Ng D, et al. Decreasing lactate level and increasing antibody production in Chinese hamster ovary cells (cho) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. J Biotechnol, 2011, 153(1-2): 27-34.
[21] Kim S H, Lee G M. Down-regulation of lactate dehydrogenase-a by sirnas for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin. Applied Microbiology and Biotechnology, 2007, 74(1): 152-159.
[22] Park H, Kim I H, Kim I Y, et al. Expression of carbamoyl phosphate synthetase i and ornithine transcarbamoylase genes in Chinese hamster ovary Dhfr-cells decreases accumulation of ammonium ion in culture media. Journal of Biotechnology, 2000, 81(2-3): 129-140.
[23] Khan S U, Schroder M. Engineering of chaperone systems and of the unfolded protein response. Cytotechnology, 2008, 57(3): 207-231.
[24] Mohan C, Lee G M. Effect of inducible co-overexpression of protein disulfide isomerase and endoplasmic reticulum oxidoreductase on the specific antibody productivity of recombinant chinese hamster ovary cells. Biotechnology and Bioengineering, 2010, 107(2): 337-346.
[25] Borth N, Mattanovich D, Kunert R, et al. Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant cho cell line. Biotechnology Progress, 2005, 21(1): 106-111.
[26] Ku S C, Ng D T, Yap M G, et al. Effects of overexpression of x-box binding protein 1 on recombinant protein production in Chinese hamster ovary and ns0 myeloma cells. Biotechnology and Bioengineering, 2008, 99(1): 155-164.
[27] Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov, 2009, 8(3): 226-234.
[28] Malphettes L, Freyvert Y, Chang J, et al. Highly efficient deletion of fut8 in cho cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnology and Bioengineering, 2010, 106(5): 774-783.
[29] Zhang M, Koskie K, Ross J S, et al. Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Biotechnology and Bioengineering, 2010, 105(6): 1094-1105.
[30] Hung F, Deng L, Ravnikar P, et al. Mrna stability and antibody production in cho cells: Improvement through gene optimization. Biotechnology Journal, 2010, 5(4): 393-401.
[31] Schlatter S, Stansfield S H, Dinnis D M, et al. On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by cho cells. Biotechnology Progress, 2005, 21(1): 122-133.
[32] Li J, Menzel C, Meier D, et al. A comparative study of different vector designs for the mammalian expression of recombinant igg antibodies. J Immunol Methods, 2007, 318(1-2): 113-124.
[33] Davies S L, O’Callaghan P M, McLeod J, et al. Impact of gene vector design on the Control of recombinant monoclonal antibody production by Chinese hamster ovary cells. Biotechnology Progress, 2011, 27(6): 1689-1699.
[34] Ho S C, Bardor M, Feng H, et al. Ires-mediated tricistronic vectors for enhancing generation of high monoclonal antibody expressing cho cell lines. J Biotechnol, 2012, 157(1): 130-139.
[35] Bianchi A A, McGrew J T. High-level expression of full-length antibodies using trans-complementing expression vectors. Biotechnology and Bioengineering, 2003, 84(4): 439-444.
[36] Kennard M L, Goosney D L, Monteith D, et al. The generation of stable, high mab expressing cho cell lines based on the artificial chromosome expression (ace) technology. Biotechnology and Bioengineering, 2009, 104(3): 540-553.
[37] Ye J, Kober V, Tellers M, et al. High-level protein expression in scalable cho transient transfection. Biotechnology and Bioengineering, 2009, 103(3): 542-551.
[38] Tuvesson O, Uhe C, Rozkov A, et al. Development of a generic transient transfection process at 100 l scale. Cytotechnology, 2008, 56(2): 123-136.
[39] Browne S M, Al-Rubeai M. Selection methods for high-producing mammalian cell lines. Trends in Biotechnology, 2007, 25(9): 425-432.
[40] Carroll S, Al-Rubeai M. The selection of high-producing cell lines using flow cytometry and cell sorting. Expert Opin Biol Ther, 2004, 4(11): 1821-1829.
[41] Lindgren K, Salmen A, Lundgren M, et al. Automation of cell line development. Cytotechnology, 2009, 59(1): 1-10.
[42] Shi S, Condon R G, Deng L, et al. A high-throughput automated platform for the development of manufacturing cell lines for protein therapeutics. J Vis Exp, 2011, 55.
[43] Legmann R, Benoit B, Fedechko R W, et al. A strategy for clone selection under different production conditions. Biotechnology Progress, 2011, 27(3): 757-765.
[44] Sleiman R J, Gray P P, McCall M N, et al. Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnology and Bioengineering, 2008, 99(3): 578-587.
[45] Brezinsky S C, Chiang G G, Szilvasi A, et al. A simple method for enriching populations of transfected cho cells for cells of higher specific productivity. J Immunol Methods, 2003, 277(1-2): 141-155.
[46] Bohm E, Voglauer R, Steinfellner W, et al. Screening for improved cell performance: Selection of subclones with altered production kinetics or improved stability by cell sorting. Biotechnology and Bioengineering, 2004, 88(6): 699-706.
[47] Chusainow J, Yang Y S, Yeo J H, et al. A study of monoclonal antibody-producing cho cell lines: What makes a stable high producer? Biotechnology and Bioengineering, 2009, 102(4): 1182-1196.
[48] Kim M, O’Callaghan P M, Droms K A, et al. A mechanistic understanding of production instability in cho cell lines expressing recombinant monoclonal antibodies. Biotechnology and Bioengineering, 2011,180(10):2434-2446.
[49] Lee C J, Seth G, Tsukuda J, et al. A clone screening method using mrna levels to determine specific productivity and product quality for monoclonal antibodies. Biotechnology and Bioengineering, 2009, 102(4): 1107-1118.
[50] Seth G, Charaniya S, Wlaschin K F, et al. In pursuit of a super producer-alternative paths to high producing recombinant mammalian cells. Current Opinion in Biotechnology, 2007, 18(6): 557-564.

[1] 陈龙冠, 覃锦红, 黄云娜, 麦俊新, 谢秋玲. 信号肽优化对重组抗体分泌表达的影响及研究进展[J]. 中国生物工程杂志, 2016, 36(3): 77-81.
[2] 刘伯宁. 用于重组抗体生产的细胞大规模培养技术[J]. 中国生物工程杂志, 2013, 33(7): 103-111.
[3] 刘伯宁. 治疗性单抗与抗体产业关键技术[J]. 中国生物工程杂志, 2013, 33(5): 132-138.
[4] 张莹,何金生,洪涛. 重组抗体药物研究进展及应用[J]. 中国生物工程杂志, 2009, 29(08): 102-106.