Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (6): 86-92    
技术与方法     
多种通气策略下的高浓度乙醇生产
孜力汗, 刘晨光, 王娜, 袁文杰, 白凤武
大连理工大学 生命科学与技术学院 大连 116023
Very High Gravity Ethanol Production Under Different Aeration Schemes
ZI Li-han, LIU Chen-guang, WANG Na, YUAN Wen-jie, BAI Feng-wu
School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China
 全文: PDF(721 KB)   HTML
摘要:

氧气在环境胁迫强的高浓度乙醇发酵中具有重要作用。考察了自絮凝酿酒酵母在多种通气策略下的乙醇发酵及絮凝状况。使用氧化还原电位(ORP)检测发酵液中氧浓度并划分了厌氧、微氧和好氧状态。厌氧条件下的终点乙醇浓度最低(119±1.5 g/L);微氧条件下使用ORP精密控制氧气供给取得较高的乙醇浓度(131±1.8和125±1.7 g/L);在通气量0.2 vvm的好氧条件下,生物量、甘油量和乙醇损失皆最大,与最优收率相比较乙醇收率降低了12.2%。高通气量增强了细胞的絮凝能力,增大了絮凝体粒径。绘制雷达图进行综合评价,恒定通气0.05 vvm的过程在乙醇生产和絮凝各方面表现均突出。

关键词: 通气策略高浓度乙醇发酵自絮凝细胞氧化还原电位    
Abstract:

Under very high gravity (VHG) ethanol fermentation, aeration is an essential operation parameter for yeast cell to improve the performance of ethanol production. Flocculating yeast was used to convert 300 g glucose/L medium under 5 aeration schemes, including non-aeration, controlled-aeration regulated by redox potential (ORP) at -150 mV and -100 mV, constant aeration by pumping air at the rate of 0.05 vvm and 0.2 vvm. ORP was monitored under all conditions and taken as a criterion to distinct anaerobic, microaerobic and aeraobic conditions. The results showed that anaerobic fermentation produced the least ethanol (119±1.5 g/L) and left the highest glucose in 72 h. Microaerobic fermentation achieved the accurate air supply depending on the real-time cell oxygen demand, which lead to higher ethanol concentration (131±1.8和125±1.7 g/L). Aerobic fermentation brought about a quick biomass formation, and corresponding fast substrate utilization. However, too large aeration rate like 0.2 vvm caused the low yield (decreased by 12.2%) due to the huge formation of biomass and by-product such as glycerol. On the other hand, the lost of ethanol by air flow was highest under this condition. Moreover, it was observed that the flocculation quantified was promoted by increasing the air supply. In order to undertake a comprehensive evaluation for ethanol production and flocculation characteristic under different aeration schemes, a series of radar plots were illustrated based on data normalization. Constant aeration at 0.05 vvm was the preferable aeration condition thanks to its performance balance at all investigated aspects.

Key words: Aeration schemes    Very high gravity ethanol fermentation    Self-flocculating yeast    ORP
收稿日期: 2013-03-04 出版日期: 2013-06-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金(21106016);中国博士后科学基金(2012M510809);中央高校基本科研业务费(DUT11RC(3)76)资助项目

通讯作者: 白凤武     E-mail: fwbai@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孜力汗
刘晨光
王娜
袁文杰
白凤武

引用本文:

孜力汗, 刘晨光, 王娜, 袁文杰, 白凤武. 多种通气策略下的高浓度乙醇生产[J]. 中国生物工程杂志, 2013, 33(6): 86-92.

ZI Li-han, LIU Chen-guang, WANG Na, YUAN Wen-jie, BAI Feng-wu. Very High Gravity Ethanol Production Under Different Aeration Schemes. China Biotechnology, 2013, 33(6): 86-92.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I6/86

[1] Mussatto S I, Dragone G, Guimaraes P M, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv, 2010, 28(6):817-830.
[2] Farrell A E, Plevin R J, Turner B T, et al. Ethanol can contribute to energy and environmental goals. Science, 2006, 311(5760): 506-508.
[3] 刘晨光, 氧化还原电位调控的高浓度乙醇发酵及其机理研究. 大连: 大连理工大学, 2011. Liu C G. The effects of oxidoreduction potential on very high gravity ethanol fermentation and studies of underlying mechanisms. Dalian: Dalian University of Technology, 2011.
[4] Bai F W, Anderson W A, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv, 2008, 26(1): 89-105.
[5] Zhao X Q, Bai F W. Yeast flocculation: new story in fuel ethanol production. Biotechnol Adv, 2009, 27(6): 849-856.
[6] Lin Y H, Chien W S, Duan K J, et al. Effect of aeration timing and interval during very-high-gravity ethanol fermentation. Process Biochem, 2011, 46(4):1025-1028.
[7] Alfenore S, Cameleyre X, Benbadis L, et al. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol, 2004, 63(5): 537-542.
[8] Adler V, Yin Z, Tew K D, et al. Role of redox potential and reactive oxygen species in stress signaling. Oncogene, 1999, 18(45): 6104-6111.
[9] Dahod S K. Redox potential as a better substitute for dissolved oxygen in fermentation process control. Biotechnol Bioeng, 1982, 24(9): 2123-2125.
[10] Murray R K, Bender D A, Botham K M, et al. Harper’s Illustrated Biochemistry. New York: McGraw-Hill Companies, 26th ed. 2003.
[11] 喻扬, 王永红, 储炬, 等.控制发酵过程氧化还原电位优化酿酒酵母乙醇生产. 生物工程学报, 2007, 23(5): 878-884. Yu Y, Wang Y H, Chu J, et al. The influence of controlling redox potential on ethanol production by Saccharomyces cerevisiae. Chin J Biotechnol, 2007, 23(5): 878-884.
[12] Lin Y H, Chien W S, Duan K J. Correlations between reduction-oxidation potential profiles and growth patterns of Saccharomyces cerevisiae during very-high-gravity fermentation. Process Biochem, 2010, 45(5): 765-770.
[13] Liu C G, Lin Y H, Bai F W. Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation. J Biotechnol, 2011, 153(1-2): 42-47.
[14] 王娜, 刘晨光, 袁文杰, 等, 氧化还原电位控制下自絮凝酵母高浓度乙醇发酵. 化工学报, 2012, 63:1168-1174. Wang N, Liu C G, Yuan W J, et al. ORP control on very high gravity ethanol fermentation by flocculating yeast. CIESC J, 2012, 63:1168-1174.
[15] Ge X M, Zhao X Q, Bai F W. Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnol Bioeng, 2005, 90(5): 523-531.
[16] Fornairon-Bonnefond C, Demaretz V, Rosenfeld E, et al. Oxygen addition and sterol synthesis in Saccharomyces cerevisiae during enological fermentation. J Biosci Bioeng, 2002, 93(2): 176-182.
[17] Liu C G, Lin Y H, Bai F W. Ageing vessel configuration for continuous redox potential-controlled very-high-gravity fermentation. J Biosci Bioeng, 2011, 111(1): 61-66.
[18] Liu C G, Lin Y H, Bai F W. A kinetic growth model for Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity environment. Biochem Eng J, 2011, 56(1-2): 63-68.
[19] Ansell R, Granath K, Hohmann S, et al. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J, 1997, 16(9): 2179-2187.
[20] Hounsa C G, Brandt E V, Thevelein J, et al. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology, 1998, 144(3): 671-680.
[21] Berovic M, Herga M. Heat shock on Saccharomyces cerevisiae inoculum increases glycerol production in wine fermentation. Biotechnol lett, 2007, 29(6): 891-894.

[1] 吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略[J]. 中国生物工程杂志, 2015, 35(9): 122-127.
[2] 王洪苏, 关桂静, 刘金香. Alexa Fluor荧光标记在细胞学和分子生物学研究中的应用[J]. 中国生物工程杂志, 2015, 35(9): 71-77.
[3] 周立军, 刘文娟, 祁永浩, 李妙. SOCS3通过JNK和STAT3信号通路调控AKT[J]. 中国生物工程杂志, 2015, 35(9): 50-56.
[4] 梁高峰, 何向峰, 陈宝安. miRNA在肿瘤分子诊断和治疗中的研究进展[J]. 中国生物工程杂志, 2015, 35(9): 57-65.
[5] 尉研, 王焕琴, 吴萌, 张凤娟, 梁国栋, 朱武洋. 黄病毒检测工程细胞系的构建及功能鉴定[J]. 中国生物工程杂志, 2015, 35(9): 35-41.
[6] 赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.
[7] 康学军, 杨怡姝. HIV-1潜伏感染体外实验模型研究进展[J]. 中国生物工程杂志, 2015, 35(8): 96-102.
[8] 李洪昌, 袁林, 张令强. 抑癌基因PTEN转基因小鼠的构建及表型初步分析[J]. 中国生物工程杂志, 2015, 35(8): 1-8.
[9] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.
[10] 朱志坚, 连凯琪, 杨帆, 张伟, 郑海学, 杨孝朴. 稳定表达鼠源整联蛋白αvβ6的CHO-677细胞系的构建[J]. 中国生物工程杂志, 2015, 35(8): 23-29.
[11] 黄鹏, 李文姝, 谢君, 鲍建瑛, 曹晓娥, 余龙, 徐一新. 人源类溶菌酶蛋白6在毕赤酵母中的重组表达及活性分析[J]. 中国生物工程杂志, 2015, 35(8): 30-37.
[12] 任琴, 郭志鸿, 王亚军, 谢忠奎, 王若愚. RNA干扰及其在增强作物抵抗有害真核生物研究中的应用[J]. 中国生物工程杂志, 2015, 35(6): 80-89.
[13] 张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.
[14] 贾翠丽, 张华伟, 王斌斌, 朱宏吉, 乔建军. 革兰氏阳性菌自然感受态生理机制的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 90-100.
[15] 李佳鑫, 冯炜, 王志钢, 王彦凤. CRISPR/Cas9技术及其在转基因动物中的应用[J]. 中国生物工程杂志, 2015, 35(6): 109-115.