Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (6): 75-79    DOI: 10.13523/j.cb.20150612
综述     
碱性成纤维细胞生长因子促进神经损伤修复的研究进展
张超1, 项丽娜1, 陈德培1, 吕鑫鑫1, 赵宜桐1, 王璐瑶1, 肖健1,2, 张宏宇1,2
1. 温州医科大学药学院 温州 325035;
2. 浙江省生物技术制药工程重点实验室 温州 325035
The Development of the Study on bFGF Promote the Nerve Injury Repair
ZHANG Chao1, XIANG Li-na1, CHEN De-pei1, LÜ Xin-xin1, ZHAO Yi-tong1, WANG Lu-yao1, XIAO Jian1,2, ZHANG Hong-yu1,2
1. College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China;
2. Zhejiang Provincial Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou 325035, China
 全文: PDF(394 KB)   HTML
摘要:

碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)是成纤维细胞生长因子家族(FGFs) 的成员之一。它是哺乳动物和人体中一种非常微量的活性物质,因其具有广泛的生理功能和重要的临床应用价值受到了国内外学者的高度重视。bFGF生物活性的多效性以及神经营养的广谱性,为其从基础走向临床提供了保证。而bFGF如何发挥神经损伤修复作用的功能和机制,仍有待进一步的发现及研究,这也是目前国内外探索和开发bFGF新临床药物的研究热点之一。针对bFGF的生物学特点及其在神经损伤修复中的功能,特别是在中枢神经系统和外周神经系统疾病中的研究进展进行了综述。

关键词: 碱性成纤维细胞生长因子神经损伤修复信号通路    
Abstract:

Basic fibroblast growth factor(bFGF) is part of the fibroblast growth factor (FGFs) family.bFGF is unique in that it is expressed both in the animal and human model but has also garnered attention for its extensive physiological functions and important clinical applications. Current evidence suggests that bFGF may play a prominent role in nerve cell regeneration, due to its pluripotent effects and neurotrophic action. Although it is already extensively studied in various disease states, there still remains much to be discovered about the functions and mechanisms in nerve regeneration of bFGF. The following review summarizes the current knowledge on bFGF with a special emphasis on central nervous system and peripheral nervous system disease.

Key words: Basic fibroblast growth factor    Injury of nerve    Repair    Signaling pathway
收稿日期: 2015-03-29 出版日期: 2015-06-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金资助项目(81200958,81472165)

通讯作者: 张宏宇     E-mail: st_hyz@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.

ZHANG Chao, XIANG Li-na, CHEN De-pei, LÜ Xin-xin, ZHAO Yi-tong, WANG Lu-yao, XIAO Jian, ZHANG Hong-yu. The Development of the Study on bFGF Promote the Nerve Injury Repair. China Biotechnology, 2015, 35(6): 75-79.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150612        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I6/75


[1] Gospodarowicz D. Purification of a fibroblast growth factor from bovine pituitary. The Journal of Biological Chemistry, 1975, 250(7): 2515-2520.

[2] Gospodarowicz D. Biological activity in vivo and in vitro of pituitary and brain fibroblast growth factor. Symposium on Fundamental Cancer Research, 1984, 37:109-134.

[3] Xiang Q, Xiao J, Zhang H, et al. Preparation and characterisation of bFGF-encapsulated liposomes and evaluation of wound-healing activities in the rat. Journal of the International Society for Burn Injuries, 2011, 37(5): 886-895.

[4] Nguyen T H, Kim S H, Decker C G, et al. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor. Nature Chemistry, 2013, 5(3): 221-227.

[5] Itoh N. The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biological & Pharmaceutical Bulletin, 2007, 30(10): 1819-1825.

[6] Nakayama T, Mutsuga N, Tosato G. FGF2 posttranscriptionally down-regulates expression of SDF1 in bone marrow stromal cells through FGFR1 IIIc. Blood, 2007, 109(4): 1363-1372.

[7] Wang X, Lin G, Martins-Taylor K, et al. Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. The Journal of Biological Chemistry, 2009, 284(49): 34054-34064.

[8] Lee J G, Kay E P. PI 3-kinase/Rac1 and ERK1/2 regulate FGF-2-mediated cell proliferation through phosphorylation of p27 at Ser10 by KIS and at Thr187 by Cdc25A/Cdk2. Investigative Ophthalmology & Visual Science, 2011, 52(1): 417-426.

[9] Tong B, Lu D, Wei Z, et al. Gleditsioside B, a triterpene saponin isolated from the anomalous fruits of Gleditsia sinensis Lam., abrogates bFGF-induced endothelial cell migration through preventing the activation of MMP-2 and FAK via inhibiting ERK and PI3K/AKT signaling pathways. Vascular Pharmacology, 2013, 58(1-2): 118-126.

[10] Wang Z, Wang Y, Ye J, et al. bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. Journal of Cellular and Molecular Medicine, 2015, 19(3): 595-607.

[11] Dehghan S, Javan M, Pourabdolhossein F, et al. Basic fibroblast growth factor potentiates myelin repair following induction of experimental demyelination in adult mouse optic chiasm and nerves. Journal of Molecular Neuroscience, 2012, 48(1): 77-85.

[12] Gu Y, Xue C, Zhu J, et al. Basic fibroblast growth factor (bFGF) facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann cells by binding to FGFR-1 through MAPK/ERK activation. Journal of Molecular Neuroscience, 2014, 52(4): 538-551.

[13] Matsumine H, Sasaki R, Tabata Y, et al. Facial nerve regeneration using basic fibroblast growth factor-impregnated gelatin microspheres in a rat model. Journal of Tissue Engineering and Regenerative Medicine, 2014.

[14] Grothe C, Nikkhah G. The role of basic fibroblast growth factor in peripheral nerve regeneration. Anatomy and Embryology, 2001, 204(3): 171-177.

[15] De Oliveira G P, Duobles T, Castelucci P, et al. Differential regulation of FGF-2 in neurons and reactive astrocytes of axotomized rat hypoglossal nucleus. A possible therapeutic target for neuroprotection in peripheral nerve pathology. Acta Histochemica, 2010, 112(6): 604-617.

[16] Duobles T, Lima T S, Levy B D, et al. S100beta and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury. Acta Cirurgica Brasileira/Sociedade Brasileira para Desenvolvimento Pesquisa em Cirurgia, 2008, 23(6): 555-560.

[17] Shimizu F, Sano Y, Abe M A, et al. Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. Journal of Cellular Physiology, 2011, 226(1): 255-266.

[18] Rai K S, Hattiangady B, Shetty A K. Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. The European Journal of Neuroscience, 2007, 26(7): 1765-1779.

[19] Werner S, Unsicker K, Von Bohlen, et al. Fibroblast growth factor-2 deficiency causes defects in adult hippocampal neurogenesis, which are not rescued by exogenous fibroblast growth factor-2. Journal of Neuroscience Research, 2011, 89(10): 1605-1617.

[20] Yang F, Liu Y, Tu J, et al. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF. Nature Communications, 2014, 5:5627.

[21] Sun D, Bullock M R, Mcginn M J, et al. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Experimental Neurology, 2009, 216(1): 56-65.

[22] Zhang H Y, Wang Z G, Wu F Z, et al. Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Molecular Neurobiology, 2013, 48(3): 452-464.

[23] Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nature Reviews Drug Discovery, 2009, 8(3): 235-253.

[24] Laestander C, Engstron W. Role of fibroblast growth factors in elicitation of cell responses. Cell Proliferation, 2014, 47(1): 3-11.

[25] Samatar A A, Poulikakos P I. Targeting RAS-ERK signalling in cancer: promises and challenges. Nature Reviews Drug Discovery, 2014, 13(12): 928-942.

[26] Claperon A, Therrien M. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene, 2007, 26(22): 3143-3158.

[27] 李晓萍,李校堃,苏志坚,等. 一种促分裂活性降低的h b F G F 突变体的表达及纯化. 中国生物工程杂志, 2005,25(2):49-52. Li X P, Li X K, Su Z J, et al.Expression and purification of basic fibroblast growth factor mutant with reduced mitogenic activity.China Biotechnology, 2005,25(2):49-52.

[28] Chen X, Park R, Shahinian A H, et al. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nuclear Medicine and Biology, 2004, 31(1): 11-19.

[29] 李晓萍,李校堃,苏志坚,等. 人碱性成纤维细胞生长因子突变体的高效表达. 中国生物工程杂志, 2005,25(5):32-35. Li X P, Li X K, Su Z J, et al.High level expression of a human basic fibroblast growth factor mutant.China Biotechnology, 2005,25(5):32-35.

[1] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[2] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[3] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[4] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[5] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[6] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[7] 刘子儒,张甜. 聚多巴胺改性聚合物在神经修复中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 57-64.
[8] 程雨涵,龚熹,罗玉萍. CD133(Prominin-1)的结构、功能及其相关抗体的研究进展 *[J]. 中国生物工程杂志, 2019, 39(5): 105-113.
[9] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[10] 刘亚楠,路莉,王学习,吴勇杰,刘霞. 脂肪干细胞对神经创伤修复的研究进展*[J]. 中国生物工程杂志, 2018, 38(3): 70-75.
[11] 张慧楠,李萌萌,文静,吴书祎,兰世建,罗忠礼. 自组装短肽R2I4R2对皮肤创伤快速修复过程的研究[J]. 中国生物工程杂志, 2018, 38(2): 7-12.
[12] 钟鹏强,刘北忠,姚娟娟,刘冬冬,袁桢,刘俊梅,陈敏,钟梁. 敲低ACTL6A通过Notch1信号通路促进早幼粒细胞分化 *[J]. 中国生物工程杂志, 2018, 38(12): 1-6.
[13] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[14] 姜春莲, 汪艳璐, 罗玉萍. 成年哺乳动物神经发生的研究进展[J]. 中国生物工程杂志, 2017, 37(5): 107-112.
[15] 李爱芳, 谷月, 李雪茹, 孙晖, 查何, 谢佳卿, 赵佳丽, 周兰. 促宫颈癌细胞增殖、迁移及其可能机制研究[J]. 中国生物工程杂志, 2017, 37(2): 8-14.