Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (6): 79-85    
技术与方法     
铜绿假单胞杆菌O-2-2产鼠李糖脂的发酵培养基优化及LC-MS/MS分析
赵方龙, 朱零清, 杨雪, 卢文玉
天津大学化工学院生物工程系 系统生物工程教育部重点实验室 天津 300072
Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis
ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu
Department of Biological Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(822 KB)   HTML
摘要:

鼠李糖脂是一种性能优良的生物表面活性剂,在生物医药、环境保护、二次采油等方面具有很高的应用潜力。采用响应面分析法,对铜绿假单胞杆菌O-2-2的培养基进行了优化。Plackett-Burman(PB)实验设计表明,磷酸盐、硝酸盐和微量元素对鼠李糖脂的产量具有显著影响。Box-Behnke(BB)优化确定最佳培养基组成为磷酸盐、硝酸盐和微量元素用量分别为3.2g/L、13.76g/L和5.17ml,理论的最大产量为8.48g/L,与实测糖脂产量8.85g/L接近。摇瓶优化后的鼠李糖脂产量较优化前的6.24g/L提高了30.8%。最优化条件下采用10%的接种量逐级放大,并通过补料发酵,最终200L罐的鼠李糖脂产量达到70g/L,发酵时间仅为110h。采用新发明的二次蒸馏工艺,鼠李糖脂纯度达86.6%。液质联用(LC-MS)分析表明所生产的鼠李糖脂成分及含量为:双糖单脂32.9%、双糖双脂17.02%、单糖单脂3.16%、单糖双脂33.54%。

关键词: 鼠李糖脂铜绿假单胞杆菌响应面优化分离工艺    
Abstract:

Rhamnolipids are excellent biosurfactants which are widely used in biomedicine, oil recovery and environmental protection. Response surface methodology (RSM) was employed to optimize the medium for rhamnolipids production by Pseudomonas aeruginosa O-2-2. The result of the Plackett-Burman design showed that phosphate, nitrate and trace elements had significant effects on rhamnolipids production. The Box-Behnke design suggested that the optimum values of phosphate, nitrate and trace elements were 3.2g/L, 13.76g/L and 5.17ml, respectively. Rhamnolipids production reached 8.85g/L, which was in agreement with the predicted production of 8.48 g/L. Compared with the production of original level (6.24g/L), 30.8% increment had been obtained. By scaling up the fermentation to 200L fermentor with the optimal medium, the concentration of rhamonlipids reached to 70g/L, and the fermentation period was kept in 110h. When the secondary-distillation was used as a new separation process, the rhamnolipid purity was 86.6%. In general, relative content of each ingredient in this product was: mono-rhamno-mono-lipid 1.79%, mono-rhamno-di-lipid 36.83%, di-rhamno-mono-lipid 39.64%, di-rhamno-di-lipid 20.70%.

Key words: Rhamnolipids    Pseudomonas aeruginosa O-2-2    Response surface methodology    Separation progress
收稿日期: 2013-03-06 出版日期: 2013-06-25
ZTFLH:  Q819  
通讯作者: 卢文玉     E-mail: wenyulu@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵方龙
朱零清
杨雪
卢文玉

引用本文:

赵方龙, 朱零清, 杨雪, 卢文玉. 铜绿假单胞杆菌O-2-2产鼠李糖脂的发酵培养基优化及LC-MS/MS分析[J]. 中国生物工程杂志, 2013, 33(6): 79-85.

ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis. China Biotechnology, 2013, 33(6): 79-85.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I6/79

[1] 张卫丽, 李淑英. 表面活性剂的应用和发展. 全面腐蚀控制, 2005, 19(6):42-45. Zhang W L, Li S Y. The application and development of surfactant. Total Corrosion Control, 2005, 19(6):42-45.
[2] 王宝辉, 张学佳, 纪巍, 等. 表面活性剂环境危害性分析. 化工进展, 2007, 26(9):1263-1268. Wang B H, Zhang X J, Ji W, et al.Hazard analysis of surfactants in ecosystem. Chemical Industry and Engineering Progress, 2007, 26(9):1263-1268.
[3] 马歌丽, 彭新榜, 马翠卿, 等. 生物表面活性剂及其应用. 中国生物工程杂志, 2003, 23(5):42-45. Ma G L, Peng X B, Ma C Q, The biosurfactants and its application. China Biotechnology, 2003, 23(5):42-45.
[4] Abdel-Mawgoud A, Hausmann R, Lépine F, et al. Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. Biosurfactants, 2011, 20:13-55.
[5] Long X, Zhang G, Shen C, et al. Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil. Bioresource Technology, 2013, 131:1-5.
[6] Henkel M, Müller M M, Kügler J H, et al. Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 2012, 47(8):1207-1219.
[7] Wu J Y, Yeh K L, Lu W B, et al. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology, 2008, 99(5):1157-1164.
[8] 马满英, 施周, 刘有势, 等. 假单胞菌 AB93066 产鼠李糖脂发酵条件的优化. 精细化工, 2008, 25(3):221-225. Ma M Y, Shi Z, Liu Y S. Optimization on fermentation conditions of rhamnolipids production by Pseudomonas AB93066. Fine Chemicals, 2008, 25(3):221-225.
[9] Giani C, Wullbrandt D, Rothert R, et al. Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose. USA, 5658793, 1997,8,19.
[10] Abalos A, Pinazo A, Infante M R, et al. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, 2001, 17(5): 1367-1371.
[11] Chen G, Zhu H. Pseudomonas aeruginosa lipopolysaccharide production in the presence of rhamnolipid. Colloids and Surfaces B: Biointerfaces, 2005, 41(1):43-48.
[12] Cohen R, Exerowa D. Surface forces and properties of foam films from rhamnolipid biosurfactants. Advances in Colloid and Interface Science, 2007, 134:24-34.
[13] Guo W Q, Ren N Q, Wang X J, et al. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresource Technology, 2009, 100(3): 1192-1196.
[14] Bergström S, Theorell H, Davide H. Pyolipic acid: a metabolic product of Pseudomonas pyocyanea active against Mycobacterium tuberculosis. Arch Biochem Biophys, 1946, 10:165-166.
[15] George S, Jayachandran K. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. Journal of Applied Microbiology, 2013, 114(2):373-383.
[16] Kirti V. Potential of new microbial isolates for biosurfactant production using combinations of distillery waste with other industrial wastes. Journal of Petroleum & Environmental Biotechnology, 2012, doi:10.4172/2157-7463.S1-002.
[17] Cabrera-Valladares N, Richardson A P, Olvera C, et al. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Applied Microbiology and Biotechnology, 2006, 73(1):187-194.

[1] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[2] 张莉,丁涓,郝宇晨,叶城,蒲洋. 一株海洋微藻的鉴定及其原生质体制备条件优化 *[J]. 中国生物工程杂志, 2018, 38(11): 42-50.
[3] 张佳瑜, 吴丹, 陈晟, 陈坚, 吴敬. 麦芽糖诱导软化芽孢杆菌α-环糊精葡萄糖基转移酶在枯草杆菌中的表达[J]. 中国生物工程杂志, 2010, 30(12): 42-48.
[4] 刘佳,袁兴中,曾光明,时进钢. 表面活性剂对绿色木霉产纤维素酶影响[J]. 中国生物工程杂志, 2006, 26(08): 62-66.
[5] 陈桂秋, 曾光明, 黄国和, 时进钢. 鼠李糖脂的表面化学和生物合成及其在垃圾堆肥中的应用展望[J]. 中国生物工程杂志, 2005, 25(S1): 125-130.
[6] 沈薇, 杨树林, 李校堃. 电喷雾质谱法检测假单胞菌BS-03产鼠李糖脂及其自由酸前体(英文)[J]. 中国生物工程杂志, 2005, 25(10): 83-87.