Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (9): 122-127    DOI: 10.13523/j.cb.20150917
综述     
解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略
吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇
宁夏大学农学院 银川 750021
Metabolic Control Fermentation Mechanism and Breeding Strategies of Cytidine Excessive Biosynthesis in Bacillus amyloliquefaciens
WU Qing, LIU Hui-yan, FANG Hai-tian, HE Jian-guo, HE Xiao-guang, YU Li-nan, WANG Meng-jiao
School of Agriculture Ningxia University, Yinchuan 750021, China
 全文: PDF(542 KB)   HTML
摘要:

胞苷是合成抗病毒、抗肿瘤药物的良好中间体,也是核苷酸类保健食品和功能性食品的重要原料.主要论述了解淀粉芽孢杆菌高效合成胞苷的代谢调控机制和构建胞苷高产菌株的育种策略.重点阐述了通过提高解淀粉芽孢杆菌嘧啶操纵子转录水平,增强胞苷合成代谢途径、阻断胞苷降解途径、增大磷酸戊糖途径向胞苷合成途径的分流量、提高胞苷合成前端代谢物PRPP的合成量、增强中心碳代谢流向胞苷合成途径、减少旁路代谢途径及促进胞苷的分泌等方法,选育出胞苷高产菌株,不仅为胞苷高产菌株的选育提供参考,也为解决目前胞苷工业化生产中存在的问题提供思路.

关键词: 解淀粉芽孢杆菌胞苷代谢调控机制育种策略    
Abstract:

Cytidine is good intermediates of anti-tumor and antiviral, also can be used as health food ingredients.The metabolic regulatory mechanism of cytidine biosynthesis in Bacillus amyloliquefaciens was discussed and the breeding strategy of constructing cytidine high-yielding strain was summarized. The focuses were on elaborating the six breeding strategies, such as improving the pyrimidine operon transcriptional level of Bacillus amyloliquefaciens, enhancing cytidine anabolic pathways and central metabolic pathways to cytidine synthesis, blocking degradation pathway of cytidine, increasing the pentose phosphate pathway to the sub-flow of cytidine synthesis pathway, reducing the bypass pathway and accelerating cytidine secretion.Thereby, the strategies of breeding high yield strain were proposed, which could provide some ideas for breeding cytidine high-yielding strains, and solve the existing problems in the processing of cytidine industrial production.

Key words: Bacillus amyloliquefaciens    Cytidine    Metabolic regulation mechanism    Breeding strategy
收稿日期: 2015-03-25 出版日期: 2015-09-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金资助项目(31301542)

通讯作者: 方海田     E-mail: fanght@nxu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略[J]. 中国生物工程杂志, 2015, 35(9): 122-127.

WU Qing, LIU Hui-yan, FANG Hai-tian, HE Jian-guo, HE Xiao-guang, YU Li-nan, WANG Meng-jiao. Metabolic Control Fermentation Mechanism and Breeding Strategies of Cytidine Excessive Biosynthesis in Bacillus amyloliquefaciens. China Biotechnology, 2015, 35(9): 122-127.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150917        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I9/122


[1] 姜妍, 许爱军. 国内外抗病毒药物研发进展. 黑龙江医药, 2006, 19(5): 388-392. Jiang Y, Xu A J. International research progress of the Antiviral. Heilongjiang Medicine Journal, 2006, 19(5):388-392.

[2] 乔宾福. 微生物产生核苷和核酸. 工业微生物, 1998, 28(1): 22-27. Qiao B F. Microbial production of nucleotides and nucleic acids. Industrial Microorganism, 1998, 28(1): 22-27.

[3] 怀丽华, 陈宁. 嘧啶核苷高产菌的代谢控制育种策略. 食品与发酵工业, 2005, 31(10): 107-110. Huai L H, Chen N. The metabolic control strategy for breeding of pyrimidine high-producing strain. Food and Fermentation Industries, 2005, 31(10): 107-110.

[4] Liu Shijie. Evolution and Genetic Engineering. 4th ed. Bioprocess Engineering, 2013.695-741.

[5] 张蓓. 代谢工程. 天津: 天津科技大学出版社, 2003.90-113. Zhang B. Metabolic Engineering. Tianjin: Tianjin University Press, 2003.90-113.

[6] 王锐. 嘧啶核苷的研究进展. 生物技术通讯, 2007, 18(3): 539-542. Wang R. Advances in pyrimidine. Letters in Biotechnology, 2007,18(3): 539-542.

[7] 孙占敏, 张克旭, 陈宁. 胞苷产生菌的选育. 现代食品科技, 2007, 22 (3): 284-285. Sun Z M, Zhang K X, Chen N. Breeding Bacillus subtilis mutants producing cytidine. Modern Food Science and Technology, 2007, 22 (3): 284-285.

[8] 盛春雷, 丁庆豹, 丁翠敏, 等. 胞苷生产菌的选育. 生物技术, 2007, 17(5): 57-59. Sheng C L, Ding Q B, Ding C M, et al. Screen of Bacillus subtilis mutants producing cytidine. Biotechnology, 2007, 17(5): 57-59.

[9] 黄艳辉, 魏志强, 徐庆阳, 等. 枯草芽孢杆菌产胞苷的初步研究. 生物技术通讯, 2007, 18(2): 255-257. Huang Y H, Wei Z Q, Xu Q Y, et al. Study on the breeding of cytidine -producing strain in Bacillus subtilis. Letters in Biotechnilogy, 2007, 18(2): 255-257.

[10] 魏志强, 徐庆阳, 刘淑云. 枯草芽孢杆菌生产胞苷的途径分析. 现代食品科技, 2008, 24(6): 544-547. Wei Z Q, Xu Q Y, Liu S Y. Metabolic pathway of cytidine synthesis in Bacillus Subtillis. Modern Food Science and Technology, 2008, 24(6):544-547.

[11] 张春艳, 丁庆豹, 许彦梅, 等. 胞苷生产菌的选育及发酵. 中国热带医学, 2009, 9(2): 241-243. Zhang C Y, Ding Q B, Xu Y M, et al. Screening and fermentation of cytidine-producing Bacillus subtilis mutants. China Tropical Medicine, 2009, 40(5): 455-459.

[12] 李登奎, 徐晓莉, 黄雷鸣, 等. 利用抗CTP合成酶反馈抑制筛选胞苷高产突变株. 中国药科大学学报,2009, 40(5): 455-459. Li D K, Xu X L, Huang L M, et al. Screening of cytidine-producing mutants based on feedback-inhibition resistance of CTP synthetase. Journal of China Pharmaceutical University, 2009, 40(5): 455-459.

[13] 苏静, 黄静, 谢希贤, 等. 枯草芽孢杆菌cdd基因敲除及对胞苷发酵的影响. 生物技术通讯, 2010, 21(1): 39-42. Su J, Huang J, Xie X X, et al. Knockout of the cdd gene in Bacillus subtilis and its influence on cytidine fermentation. Letters in Biotechnology, 2010, 21(1): 39-42.

[14] 苏静, 邓培生, 谢希贤, 等. 基于cdd基因敲除和嘧啶操纵子转移的胞苷产生菌的研究. 天津科技大学学报, 2010, 25(5): 1-5. Su J, Deng PS, Xie X X, et al. Study on cytidine producing strain based on cdd gene knockout and pyrimidine operon transfer. Journal of Tianjin University of Science & Technology, 2010, 25(5): 1-5.

[15] 方海田, 周运佼, 谢希贤, 等. 大肠杆菌ATCase抗反馈抑制突变体的构建及其对胞苷积累的影响. 天津科技大学学报, 2012, 27(4): 13-16. Fang H T, Zhou Y J, Xie X X, et al. Construction of ATCase mutants with feedback inhibition resistance and their effect on the cytidine production in E. coli. Journal of Tianjin University of Science & Technology, 2012, 27(4): 13-16.

[16] 方海田, 周运佼, 谢希贤, 等. 大肠杆菌cdd和 thrA基因的敲除及其对胞苷积累量的影响. 现代食品科技, 2012, 28(10):1306-1310. Fang H T, Zhou Y J, Xie X X, et al. Effect of gene knockout of cdd and thrA on cytidine production in E. coli. Modern Food Science and Technology, 2012, 28(10): 1306-1310.

[17] 吴晓娇, 孙家凯, 霍文婷, 等. 过表达carAB和pyrBI对大肠杆菌发酵胞苷的影响. 中国生物工程杂志,2012, 32(2): 39-44. Wu X J, Sun J K, Huo W T, et al. Effects of carAB and pyrBI overpression on cytidine fermentation in Escherichia coli. China Biotechnology, 2012, 32(2): 39-44.

[18] Satoru Asahi, Yutaka Tsunemi, Muneharu Doi. Improvement of cytidine producing mutant of Bacillus subtilis introducing a Mutation by homologous recombination. Biosci Biotech Biochem, 1995, 59(11): 2123-2126.

[19] Satoru Asahi, Yutaka Tsunemi. Cytidine production by mutants of Bacillus subtilis. Biosci Biotech Biochem,1996, 60(2): 353-354.

[20] Fang Haitian, Xie Xixian, Xu Qingyang, et al. Enhancement of cytidine production by coexpression of gnd, zwf and prs genes in recombinant Escherichia coli CYT 15. Biotechnologgy Letters, 2013, 35(2): 245-251.

[21] Fang Haitian, Zhang Chenglin, Xie Xixian, et al. Enhanced cytidine production by a recombinant Escherichia coli strain using genetic manipulation strategies. Annals of Microbiology, 2014, 64(3): 1203-1210.

[22] Charles L, Turnbough J, Robert L. Switzer.Regulation of pyrimidine biosynthetic gene expression in bacteria: Repression without repressors. Microbiology and Molecular Biology Reviews, 2008, 72(2): 266-300.

[23] Seul Keyung-Jo, Hyun-Soo Cho. Characterization of a PyrR-deficient mutant of Bacillus subtilis by a proteomic approach. Microbiol Biotechnol, 2011, 39(1): 9-19.

[24] Zhang H, Robert L S. Transcriptional pausing in the Bacillus subtilis pyr operon in vitro:A role in transcriptional attenuation. Journal of Bacteriology, 2003, 185, 4764-4771.

[25] Christopher J Fields, Robert L Switzer. Regulation of pyr gene expression in Mycobacterium smegmatis by PyrR-dependent translational repression. Journal of Bacteriology, 2007,189(17): 6236–6245.

[26] Fang Haitian, Xie Xixian, Xu Qingyang, et al. Enhancement of cytidine production by coexpression of gnd, zwf and prs genes in recombinant Escherichia coli CYT15. Biotechnol Lett, 2013, 35: 245–251.

[27] Azza Ramadan, Zlatina Naydenova, Katarina Stevanovic, et al. The adenosine transporter, ENT1, in cardiomyocytes is sensitive to inhibition by ethanol in a kinase-dependent manner: implications for ethanol-dependent cardioprotection and nucleoside analog drug cytotoxicity. Purinergic Signalling, 2014, 10(2): 305-312.

[28] 魏娜, 李柏林, 欧杰. 细胞膜通透性调节在发酵代谢中的重要性. 食品科技, 2006, 9: 14-17. Wei N, Li B L, Ou J. Role of cell membrane permeability controlon fermentation metabolic. Food Science and Technology, 2006, 9: 14-17.

[1] 刘宇帅,张杰,钟瑾,李晶,孟利强,张淑梅. 解淀粉芽孢杆菌TF28抗菌脂肽芬芥素的分离鉴定及抑菌作用 *[J]. 中国生物工程杂志, 2018, 38(10): 20-29.
[2] 周广麒, 马蓬勃, 刘俏, 权春善, 范圣第. 解淀粉芽孢杆菌Q-426培养基优化及抑菌活性的预测[J]. 中国生物工程杂志, 2013, 33(11): 21-26.
[3] 赵朋超, 权春善, 金黎明, 王丽娜, 范圣第. 氮源和碳源对解淀粉芽孢杆菌Q-426抗菌脂肽合成的影响[J]. 中国生物工程杂志, 2012, 32(10): 50-56.
[4] 曹海鹏, 卫若鹏, 何珊, 吕利群. 水产养殖用解淀粉芽孢杆菌微胶囊的安全性评价[J]. 中国生物工程杂志, 2012, 32(05): 58-65.
[5] 熊文, 杨学敏, 王建华, 权春善, 范圣第. DKPs对解淀粉芽孢杆菌Q-426抗菌活性物质基因表达量的影响[J]. 中国生物工程杂志, 2012, 32(03): 47-52.
[6] 吴晓娇, 孙家凯, 霍文婷, 谢希贤, 徐庆阳, 陈宁. 过表达carABpyrBI对大肠杆菌发酵胞苷的影响[J]. 中国生物工程杂志, 2012, 32(02): 39-44.
[7] 赵宏宇, 赵玥, 王建英, 李珺, 蔡禄. 5-溴脱氧尿嘧啶核苷标记酵母基因组DNA的方法[J]. 中国生物工程杂志, 2012, 32(01): 81-86.
[8] 秦洁, 漆正宇, 张艳敏, 郭新, 崔光辉, 桂耀庭. 5-Aza-dC在mES细胞向生殖细胞分化中的DNA甲基化调控机制[J]. 中国生物工程杂志, 2011, 31(11): 44-50.
[9] 王英国,王军华,权春善,范圣第. 解淀粉芽孢杆菌抗菌活性物质的分离纯化及抑菌活性研究[J]. 中国生物工程杂志, 2007, 27(12): 41-45.
[10] 甘四明, 施季森, 白嘉雨. 分子标记技术在林木常规育种中的应用及其问题[J]. 中国生物工程杂志, 1999, 19(3): 49-51,11.