Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (6): 80-89    DOI: 10.13523/j.cb.20150613
综述     
RNA干扰及其在增强作物抵抗有害真核生物研究中的应用
任琴1,2, 郭志鸿1, 王亚军1, 谢忠奎1, 王若愚1
1. 中国科学院寒区旱区环境与工程研究所 兰州 730000;
2. 中国科学院大学 北京 100049
RNA Interference and Its Application in Enhancing Crop Resistance Against Harmful Eukaryotes
REN Qin1,2, GUO Zhi-hong1, WANG Ya-jun1, XIE Zhong-kui1, WANG Ruo-yu1
1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(515 KB)   HTML
摘要:

RNAi是一种序列特异的同源依赖型基因沉默现象,在真核生物中普遍存在,是生物体抵抗核酸入侵、调控自身基因表达的重要途径。RNAi发现以后,很快就作为一种反向遗传学手段广泛应用于基因功能鉴定,并且在作物改良中得到了广泛应用,在作物抗病毒及品种改良方面得到了成功应用。近年来,随着对RNAi机制认识的不断加深,RNAi技术作为一种增强植物抵抗线虫、草食昆虫、真菌等有害真核生物的新策略的研究逐渐展开,并取得了一定成果,展现出良好的发展前景。对RNAi及其在增强植物抵抗有害真核生物方面的研究进展进行了综述,并对RNAi作为一种持久抗病虫育种策略的前景进行了展望。

关键词: RNAi有害真核生物害虫寄生杂草真菌    
Abstract:

RNAi is a common specific sequence homology-dependent gene silencing phenomenon in eukaryotes, it is an important way to regulate gene expression for resistanting to nuclease invasion. Since being found, RNAi is widely used in gene function identification, and has been widely applied in crop and antiviral improvement as a kind of reverse genetics methods. In recent years, with the deepening understanding of RNAi, RNAi showed good promising prospects as a new strategy to enhance plant resistance to nematodes, herbivorous insects, fungi and other harmful eukaryotes and achieved some results. RNAi and its research progress in enhancing plant resistance to harmful eukaryotes, and the prospect of persistent pest resistance breeding strategies for RNAi were summarized.

Key words: RNAi    Harmful eukaryotes    Pests    Parasitic weeds    Fungi
收稿日期: 2015-02-08 出版日期: 2015-06-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金(31101190)、中国科学院"国际人才计划"(2015VEB069)资助项目

通讯作者: 郭志鸿     E-mail: guozhhong@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

任琴, 郭志鸿, 王亚军, 谢忠奎, 王若愚. RNA干扰及其在增强作物抵抗有害真核生物研究中的应用[J]. 中国生物工程杂志, 2015, 35(6): 80-89.

REN Qin, GUO Zhi-hong, WANG Ya-jun, XIE Zhong-kui, WANG Ruo-yu. RNA Interference and Its Application in Enhancing Crop Resistance Against Harmful Eukaryotes. China Biotechnology, 2015, 35(6): 80-89.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150613        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I6/80


[1] Haverkort A J, Boonekamp P M, Hutten R, et al. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Research, 2008, 51(1): 47-57.

[2] Niu J H, Jian H, Xu J M, et al. RNAi technology extends its reach: engineering plant resistance against harmful eukaryotes. Afr J Biotechnol, 2010, 9(45): 7573-7582.

[3] Oerke E C. Crop losses to pests. The Journal of Agricultural Science, 2006, 144(01): 31-43.

[4] 朱有勇, 陈海如, 范静华, 等. 利用水稻品种多样性控制稻瘟病研究. 中国农业科学, 2003, 36(5): 521-527. Zhu Y Y, Chen H R, Fang J H, et al. The use of rice variety diversity for rice blast control. Scientia Agricultura Sinica, 2003, 36(5): 521-527.

[5] Scholte K. Effect of crop rotation on the incidence of soil-borne fungal diseases of potato. Netherlands Journal of Plant Pathology, 1992, 98(2): 93-101.

[6] Whiting K R, Crookston R K. Host-specific pathogens do not account for the corn-soybean rotation effect. Crop Science, 1993, 33(3): 539-543.

[7] Hwang S F, Ahmed H U, Gossen B D, et al. Effect of crop rotation on the soil pathogen population dynamics and canola seedling establishment. Plant Pathology Journal (Faisalabad), 2009, 8(3): 106-112.

[8] Getsinger K D. Chemical control research in the corps of engineers. Journal of Aquatic Plant Management, 1998, 36: 61-64.

[9] Harms C T. Engineering genetic disease resistance into crops: biotechnological approaches to crop protection. Crop Protection, 1992, 11(4): 291-306.

[10] Johnson R. Classical plant breeding for durable resistance to diseases. Journal of Plant Pathology, 2000,82(1):3-7.

[11] Fry W. Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology, 2008, 9(3): 385-402.

[12] Leach J E, Vera Cruz C M, Bai J, et al. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annual Review of Phytopathology, 2001, 39(1): 187-224.

[13] McDonald B A, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 2002, 40(1): 349-379.

[14] Janmaat A F, Myers J. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proceedings of the Royal Society of London B: Biological Sciences, 2003, 270(1530): 2263-2270.

[15] Candas M, Loseva O, Oppert B, et al. Insect resistance to Bacillus thuringiensis alterations in the indianmeal moth larval gut proteome. Molecular & Cellular Proteomics, 2003, 2(1): 19-28.

[16] Eamens A, Wang M B, Smith N A, et al. RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiology, 2008, 147(2): 456-468.

[17] Shekhawat U K, Ganapathi T R, Hadapad A B. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy to Pvirus infection. Journal of General Virology, 2012, 93(Pt 8): 1804-1813.

[18] Seemanpillai M, Dry I, Randles J, et al. Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Molecular Plant-microbe Interactions, 2003, 16(5): 429-438.

[19] Pooggin M, Shivaprasad PV, Veluthambi K, et al. RNAi targeting of DNA virus in plants. Nature Biotechnology, 2003, 21(2): 131-132.

[20] Aragão F J L, Faria J C. First transgenic geminivirus-resistant plant in the field. Nature Biotechnology, 2009, 27(12): 1086-1088.

[21] Buchmann R C, Asad S, Wolf J N, et al. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. Journal of Virology, 2009, 83(10): 5005-5013.

[22] Rodríguez-Negrete E A, Carrillo-Trip P J, Rivera-Bustamante R F. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. Journal of Virology, 2009, 83(3): 1332-1340.

[23] Zhang Z, Chen H, Huang X, et al. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. The Plant Cell Online, 2011, 23(1): 273-288.

[24] Itaya A, Folimonov A, Matsuda Y, et al. Potato spindle tuber viroid as inducer of RNA silencing in infected tomato. Molecular Plant-microbe Interactions, 2001, 14(11): 1332-1334.

[25] Escobar M A, Civerolo E L, Summerfelt K R, et al. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proceedings of the National Academy of Sciences, 2001, 98(23): 13437-13442.

[26] Baulcombe D. RNA silencing in plants. Nature, 2004, 431(7006): 356-363.

[27] Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature, 2004, 431(7006): 343-349.

[28] Hannon G J. RNA interference. Nature, 2002, 418(6894): 244-251.

[29] Lippman Z, Martienssen R. The role of RNA interference in heterochromatic silencing. Nature, 2004, 431(7006): 364-370.

[30] Wassenegger M, Heimes S, Riedel L, et al. RNA-directed de novo methylation of genomic sequences in plants. Cell, 1994, 76(3): 567-576.

[31] Jones L, Ratcliff F, Baulcombe D C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Current Biology, 2001, 11(10): 747-757.

[32] Mette M F, Aufsatz W, Van der Winden J, et al. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. The EMBO Journal, 2000, 19(19): 5194-5201.

[33] Zilberman D, Cao X, Jacobsen S E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003, 299(5607): 716-719.

[34] Novina C D, Sharp P A. The rnai revolution. Nature, 2004, 430(6996): 161-164.

[35] Weiberg A, Wang M, Lin F M, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 2013, 342(6154): 118-123.

[36] Pumplin N, Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 2013, 11(11): 745-760.

[37] Vetukuri R R, Åsman A K, Tellgren-Roth C, et al. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PloS One, 2012, 7(12): e51399.

[38] Mao Y B, Cai W J, Wang J W, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 2007, 25(11): 1307-1313.

[39] Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. Journal of Insect Physiology, 2010, 56(3): 227-235.

[40] McEwan D L, Weisman A S, Hunter C P. Uptake of extracellular double-stranded RNA by SID-2. Molecular Cell, 2012, 47(5): 746-754.

[41] Knip M, Constantin M E, Thordal-Christensen H. Trans-kingdom cross-talk: small RNAs on the move. PLoS Genetics, 2014, 10(9): e1004602.

[42] Aly R. Trafficking of molecules between parasitic plants and their hosts. Weed Research, 2013, 53(4): 231-241.

[43] Molnar A, Melnyk C W, Bassett A, et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science, 2010, 328(5980): 872-875.

[44] Whangbo J S, Hunter C P. Environmental RNA interference. Trends in Genetics, 2008, 24(6): 297-305.

[45] Chitwood D J. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Management Science, 2003, 59(6-7): 748-753.

[46] Fire A, Xu S Q, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.

[47] Timmons L, Fire A. Specific interference by ingested dsRNA. Nature, 1998, 395(6705): 854-854.

[48] Boutla A, Kalantidis K, Tavernarakis N, et al. Induction of RNA interference in Caenorhabditis elegans by RNAs derived from plants exhibiting post-transcriptional gene silencing. Nucleic Acids Research, 2002, 30(7): 1688-1694.

[49] Gheysen G, Vanholme B. RNAi from plants to nematodes. Trends in Biotechnology, 2007, 25(3): 89-92.

[50] Yadav B C, Veluthambi K, Subramaniam K. Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Molecular and Biochemical Parasitology, 2006, 148(2): 219-222.

[51] Huang G, Allen R, Davis E L, et al. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences, 2006, 103(39): 14302-14306.

[52] Fairbairn D J, Cavallaro A S, Bernard M, et al. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta, 2007, 226(6): 1525-1533.

[53] Steeves R M, Todd T C, Essig J S, et al. Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Functional Plant Biology, 2006, 33(11): 991-999.

[54] Sindhu A S, Maier T R, Mitchum M G, et al. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. Journal of Experimental Botany, 2009, 60(1): 315-324.

[55] Dubreuil G, Magliano M, Dubrana M P, et al. Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode. Journal of Experimental Botany, 2009, 60(14): 4041-4050.

[56] Arguel M J, Jaouannet M, Magliano M, et al. siRNAs trigger efficient silencing of a parasitism gene in plant parasitic root-knot nematodes. Genes, 2012, 3(3): 391-408.

[57] Huang Y, Mei M, Mao Z, et al. Molecular cloning and virus-induced gene silencing of MiASB in the southern root-knot nematode, Meloidogyne incognita. European Journal of Plant Pathology, 2014, 138(1): 181-193.

[58] Lilley C J, Davies L J, Urwin P E. RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology, 2012, 139(05): 630-640.

[59] 于晓东, 周红章, 罗天宏. 辽东栎叶片昆虫取食形状多样性及其变化模式. 植物生态学报, 2001, 25(5): 553-560. Yu X D, Zhou H Z, Luo T H. Patterns of damage by phytophagous insects on leaves of Quercus liaotungensis. Journal of Plant Ecology, 2001, 25(5): 553-560.

[60] Coley P D, Barone J A. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 1996, 27:305-335.

[61] Price D R, Gatehouse J A. RNAi-mediated crop protection against insects. Trends in Biotechnology, 2008, 26(7): 393-400.

[62] Sivakumar S, Rajagopal R, Venkatesh G R, et al. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. Journal of Biological Chemistry, 2007, 282(10): 7312-7319.

[63] Mao Y B, Tao X Y, Xue X Y, et al. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Research, 2011, 20(3): 665-673.

[64] Tao X Y, Xue Y I, Huang Y P, et al. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Molecular Ecology, 2012, 21(17): 4371-4385.

[65] Baum J A, Bogaert T, Clinton W, et al. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007, 25(11): 1322-1326.

[66] Wang Y, Zhang H, Li H, et al. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS One, 2011, 6(4): e18644.

[67] Zhao Y Y, Liu F, Yang G, et al. PsOr1, a potential target for RNA interference-based pest management. Insect Molecular Biology, 2011, 20(1): 97-104.

[68] Bautista M A M, Miyata T, Miura K, et al. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology, 2009, 39(1): 38-46.

[69] Fisher M C, Henk D A, Briggs C J, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature, 2012, 484(7393): 186-194.

[70] 王绍文, 刘刚, 邢苗, 等. 丝状真菌中的 RNA 干扰及其应用技术. 生物技术通报, 2011, 10: 014. Wang S W, Liu G, Xing M, et al. Advances in filamentous fungal RNA interference and its application technology. Biotechnology Bulletin, 2011, 10: 014.

[71] Liu H, Cottrell T R, Pierini L M, et al. RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics, 2002, 160(2): 463-470.

[72] Kadotani N, Nakayashiki H, Tosa Y, et al. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Molecular Plant-microbe Interactions, 2003, 16(9): 769-776.

[73] Nicolás F E, Torres-Martínez S, Ruiz-Vázquez R M. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. The EMBO Journal, 2003, 22(15): 3983-3991.

[74] Tinoco M L, Dias B B, Dall’Astta R C, et al. In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biology, 2010, 8(1): 27.

[75] Sun J, Li X, Feng P, et al. RNAi-mediated silencing of fungal acuD gene attenuates the virulence of Penicillium marneffei. Medical Mycology, 2014,52(2):1-2.

[76] Trippe K M, Wolpert T J, Hyman M R, et al. RNAi silencing of a cytochrome P450 monoxygenase disrupts the ability of a filamentous fungus, Graphium sp., to grow on short-chain gaseous alkanes and ethers. Biodegradation, 2014, 25(1): 137-151.

[77] Salame T M, Ziv C, Hadar Y, et al. RNAi as a potential tool for biotechnological applications in fungi. Applied Microbiology and Biotechnology, 2011, 89(3): 501-512.

[78] Mascia T, Nigro F, Abdallah A, et al. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector. Proceedings of the National Academy of Sciences, 2014, 111(11): 4291-4296.

[79] Lamour K, Kamoun S. Oomycete Genetics and Genomics: Diversity, Interactions and Research Tools. Hoboken,New Jersey:John Wiley & Sons, 2009.

[80] van West P, Kamoun S, van’t Klooster J W, et al. Internuclear gene silencing in Phytophthora infestans. Molecular Cell, 1999, 3(3): 339-348.

[81] Whisson S C, Avrova A O, Van West P, et al. A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Molecular Plant Pathology, 2005, 6(2): 153-163.

[82] Judelson H S, Tani S. Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryotic Cell, 2007, 6(7): 1200-1209.

[83] Grenville-Briggs L J, Anderson V L, Fugelstad J, et al. Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. The Plant Cell Online, 2008, 20(3): 720-738.

[84] Colditz F, Niehaus K, Krajinski F. Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches. Planta, 2007, 226(1): 57-71.

[85] Saraiva M, De Bruijn I, Grenville-Briggs L, et al. Functional characterization of a tyrosinase gene from the oomycete Saprolegnia parasitica by RNAi silencing. Fungal Biology, 2014, 118(7): 621-629.

[86] Stamler R A, Goldberg N P, Sanogo S, et al. In vitro and in vivo RNAi silencing of Phytophthora capsici.Phytopathology, 2012, 102(7): 114-114.

[87] Moazeni M, Nabili M, Badali H, et al. RNAi technology: A novel approaches against fungal infections. Research in Molecular Medicine, 2014, 2(3): 1-10.

[88] Aly R. Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cellular & Developmental Biology-Plant, 2007, 43(4): 304-317.

[89] Balázs E, Vurro M, Gressel J. Managing parasitic weeds: integrating science and practice. Pest Management Science, 2009, 65(5): 451-452.

[90] Longo A M G, Lo Monaco A, Mauromicale G. The effect of Phelipanche ramosa infection on the quality of tomato fruit. Weed Research, 2010, 50(1): 58-66.

[91] Parker C. Observations on the current status of Orobanche and Striga problems worldwide. Pest Management Science, 2009, 65(5): 453-459.

[92] Yoder J I, Scholes J D. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Current Opinion in Plant Biology, 2010, 13(4): 478-484.

[93] Aly R, Hamamouch N, Abu-Nassar J, et al. Movement of protein and macromolecules between host plants and the parasitic weed Phelipanche aegyptiaca Pers. Plant Cell Reports, 2011, 30(12): 2233-2241.

[94] Tomilov A A, Tomilova N B, Wroblewski T, et al. Trans-specific gene silencing between host and parasitic plants. The Plant Journal, 2008, 56(3): 389-397.

[95] Aly R, Cholakh H, Joel D M, et al. Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnology Journal, 2009, 7(6): 487-498.

[96] de Framond A, Rich P J, McMillan J, et al. Effects of Striga parasitism of Transgenic Maize Armed with RNAi Constructs Targeting Essential S. asiatica Genes. Integrating New Technologies for Striga Control: Toward Ending the Witch-Hunt Hackensack, NJ: World Scientific, 2007.185-196.

[97] Bandaranayake P C, Yoder J I. Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant. Molecular Plant-Microbe Interactions, 2013, 26(5): 575-584.

[98] Kirigia D, Runo S, Alakonya A. A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica. Plant Methods, 2014, 10(1): 16.

[99] Westwood J H, Pamphilis C W, Das M, et al. The Parasitic Plant Genome Project: new tools for understanding the biology of Orobanche and Striga. Weed Science, 2012, 60(2): 295-306.

[100] Liu R J, Chen Y L. Mycorrhizology. Beijing:Science Press, 2007. 152: 289-319.

[1] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[2] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[3] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[4] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[5] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[6] 来亚鹏, 邓婷婷, 刘刚, 王娟. 同源过表达BglR对嗜热毁丝霉β-葡萄糖苷酶活性的影响[J]. 中国生物工程杂志, 2017, 37(7): 64-71.
[7] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[8] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[9] 李玉强, 朱志图, 王巍, 李谌, 徐娜, 王钰, 李男, 孙宏治. RNA干扰NUP88基因对人乳腺癌MCF-7细胞生长及侵袭力的影响[J]. 中国生物工程杂志, 2014, 34(9): 31-39.
[10] 严菊芬, 齐宁波, 王素萍, 赵健烽, 杨树林. 温莪术内生真菌Gibberella moniliformis EZG0807诱变及其诱变株遗传稳定性研究[J]. 中国生物工程杂志, 2014, 34(5): 23-29.
[11] 韩启灿, 霍光华, 罗桂祥. 一株病原拮抗野生菌株的筛选、鉴定及其发酵工艺优化[J]. 中国生物工程杂志, 2014, 34(5): 66-74.
[12] 王鑫, 陈玲, 孙飞, 陆航. RNAi沉默CXCR7对人结肠癌细胞SW620特异性靶向抑制的实验研究[J]. 中国生物工程杂志, 2014, 34(2): 14-20.
[13] 蒋婷婷, 温晓霞, 陈尧. 沉默c2orf68基因对结直肠癌细胞增殖的影响[J]. 中国生物工程杂志, 2014, 34(2): 7-13.
[14] 胡彬彬, 林连兵, 魏云林, 季秀玲, 张琦. 一种高效的真菌总蛋白质提取方法[J]. 中国生物工程杂志, 2013, 33(9): 53-58.
[15] 邵子静, 蒋楠, 晏华立, 詹诚, 徐莺, 陈放. 麻疯树核糖体失活蛋白Curcin2的原核可溶性表达及其抗真菌活性研究[J]. 中国生物工程杂志, 2013, 33(7): 43-49.