Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (6): 109-115    DOI: 10.13523/j.cb.20150616
农业生物技术专栏     
CRISPR/Cas9技术及其在转基因动物中的应用
李佳鑫, 冯炜, 王志钢, 王彦凤
内蒙古大学生命科学学院 呼和浩特 010021
CRISPR/Cas9 System and Its Applications in Transgenic Animals
LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng
College of Life Science, Inner Mongolia University, Hohhot 010021, China
 全文: PDF(636 KB)   HTML
摘要:

CRISPR/Cas9技术是一种新型的基因组定点编辑技术,具有设计简单、特异性强、效率高及可以在目标位点产生多种类型的编辑结果等特点,适用于在多种细胞中进行大规模的基因编辑。综述了CRISPR/Cas9技术的研究背景、基本原理和研究进展,从靶基因敲除(knock-out)、外源基因整合(knock-in)和目标基因转录沉默(knock-down)等方面总结了CRISPR/Cas9在转基因动物中的应用概况,并对现有的三种基因组定点编辑技术进行了比较。CRISPR/Cas9技术在转基因动物中具有明显的应用优势和良好前景。

关键词: CRISPR/Cas9基因组定点编辑转基因动物    
Abstract:

Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system is a novel tool for targeted genome editing and regulation of gene expression. Cas9 offers several potential features, including the case of customization, higher targeting efficiency and the ability to facilitate multiplex genome editing, which suitable for large-scale gene editing in a variety of type cells. The CRISPR/Ca9 system with the background of investigation, the mechanism of reaction and its progress was described. The application of CRISPR/Cas system in transgenic animals was summarized in the gene knockout, knock-in and knock-down. CRISPR/Ca9 system was compared with Zinc finger nucleases and transcription activator-like nucleases, and demonstrated obviously advantages. CRISPR/Ca9 technology has great prospects for application in transgenic animals.

Key words: Trangenic animals    CRISPR/Cas9    Target genome editing technique
收稿日期: 2015-03-03 出版日期: 2015-06-25
ZTFLH:  Q819  
基金资助:

高产绒量绒山羊新品系培育转基因重大专项(2014ZX08008-002)资助项目

通讯作者: 王彦凤     E-mail: wyf-imu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李佳鑫, 冯炜, 王志钢, 王彦凤. CRISPR/Cas9技术及其在转基因动物中的应用[J]. 中国生物工程杂志, 2015, 35(6): 109-115.

LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng. CRISPR/Cas9 System and Its Applications in Transgenic Animals. China Biotechnology, 2015, 35(6): 109-115.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150616        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I6/109


[1] Urnov F D, Rebar E J, Holmes M C, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010, 11(9):636-646.

[2] Davis D, Stokoe D. Zinc finger nucleases as tools to understand and treat human diseases. BMC Med, 2010, 8(1):42 doi: 10.1186/1741-7015-8-42.

[3] Walsh R M, Hochedlinger K. A variant CRISPR-Cas9 system adds versatility to genome engineering. Proc Natl Acad Sci U S A, 2013, 110(39):15514-15515.

[4] News 2013 RUNNERS-UP Genetic Microsurgery for the Masses Science, 2013, 342(6165):1434-1435.

[5] Jansen R, Embden J D, Gaastra W,et al. Identification of genes that are associated with DNA l: repeats in prokaryotes. Mol Microbiol, 2002, 43(6):1565-1575.

[6] Bolotin A, Quinquis B, Sorokin A,et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 151(8):2551-2561.

[7] Mojica F J, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005, 60(2):174-182.

[8] Pourcel C, Salvignol G, Vergnaud G,et al. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(3):653-663.

[9] Barrangou R, Fremaux C, Deveau H,et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819):1709-1712.

[10] Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science, 2008, 322(5909):1843-1845.

[11] Jinek M, Chylinski K, Fonfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096):816-821

[12] Barrangou, Rodolphe, Oost, et al, CRISPR-Cas Systems: RNA-mediated Adaptive Immunity in Bacteria and Archaea. Heidelberg: Springer, 2013.176-196.

[13] Gasiunas G, Barrangou R, Horvath P,et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012, 109(39):2579-2586.

[14] Deveau H, Barrangou R, Garneau J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol, 2008, 190(4):1390-1400.

[15] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962):167-170.

[16] Cong L, Ran F A, Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems.Science,2013, 339(6121):819-823.

[17] Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.

[18] Pyzocha N K, Ran F A, Hsu P D, et al. Rna-guided genome editing of mammalian.Cell, 2014, 1114:269-277.

[19] Wagner J C, Platt R J, Goldfless S J, et al.Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat Methods, 2014, 11(9):915-918.

[20] Ran F A, Hsu P D, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013, 8(11):2281-2308.

[21] Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci, 2015, 72(6):1175-1184.

[22] Choi W, Yum S, Lee S, et al. Disruption of exogenous eGFP gene using RNA-guided endonuclease in bovine transgenic somatic cells. Zygote, 2014, 26:1-8.

[23] Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014,156(4):836-843.

[24] Platt R J, Chen S, Zhou Y, et al. CRISPR-Cas9 knock in mice for genome editing and cancer modeling. Cell, 2014, 159(2):440-455.

[25] Ma Y, Ma J, Zhang X, et al. Generation of eGFP and Cre knock in rats by CRISPR/Cas9, FEBS J, 2014, 281(17):3779-3790.

[26] Auer T O, Duroure K, De Cian A, et al. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res, 2014, 24(1):142-153.

[27] Yang H, Wang H, Shivalila C S, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 2013, 154(6):1370-1379.

[28] Heo Y T, Quan X, Xu Y N,et al. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells Dev, 2015, 24(3):393-402.

[29] Kimura Y, Hisano Y, Kawahara A,et al. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep, 2014, 4:6545.

[30] Li K, Wang G, Andersen T, et al. Optimization of genome engineering approaches with the CRISPR/Cas9 system. PLoS One, 2014, 9(8):e105779.

[31] Perez-Pinera P, Kocak D D, Vockley C M, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods, 2013, 10(10):973-976.

[32] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340):602-607.

[33] Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5):1173-1183.

[34] Gilbert L A, Horlbeck M A, Adamson B,et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3):647-661.

[35] Cong L, Zhou R, Kuo Y C, et al. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun, 2012, 24(3):968.

[36] Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 4(2):442-441.

[37] Zalatan J G, Lee M E, Almeida R, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015, 160(1-2):339-350.

[38] Mali P, Aach J, Stranges P B, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 2013, 31(9):833-838.

[39] Ikmi A, McKinney S A, Delventhal K M, et al. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun, 2014, 5:5486.

[40] Larson M H, Gilbert L A, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc, 2013, 8(11):2180-2196.

[41] Cradick T J, Fine E J, Antico C J, et al. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res, 2014, 41(20):9584-9592.

[42] Ran F A, Hsu P D, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6):1380-1389.

[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[4] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[5] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[6] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[7] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[8] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[9] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[10] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[11] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[12] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[13] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[14] 刘赛宝,李亚芳,王辉,王伟,冉多良,陈洪岩,孟庆文. 利用CRISPR/Cas9技术构建流感病毒高产细胞系MDCK-Tpl2 -/-*[J]. 中国生物工程杂志, 2019, 39(1): 46-54.
[15] 潘海峰,杨晗,于思远,李廷栋,葛胜祥. 基于体外组装核糖核蛋白形式的CRISPR/Cas9基因编辑方法研究进展 *[J]. 中国生物工程杂志, 2019, 39(1): 71-76.