Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (8): 83-89    DOI: 10.13523/j.cb.20150812
技术与方法     
产耐高温谷氨酰胺转胺酶菌株的快速筛选方法
郭玮婷1, 张慧1, 查东风2, 黄汉峰2, 黄静1, 高红亮1, 常忠义1, 金明飞1, 鲁伟3
1. 华东师范大学生命科学学院 上海 200241;
2. 河南省商丘市农业局经作中心 商丘 476000;
3. 泰兴市东圣食品科技有限公司 泰兴 225411
A Rapid Method of Screening for Thermostable Transglutaminase from Streptomyces mobaraensis
GUO Wei-ting1, ZHANG Hui1, ZHA Dong-feng2, HUANG Han-feng2, HUANG Jing1, GAO Hong-liang1, CHANG Zhong-yi1, JIN Ming-fei1, LU Wei3
1. School of Life Science, East China Normal University, Shanghai 200241, China;
2. Economic Crops Center Henan Shangqiu Agriculture Bureau, Shangqiu 476000, China;
3. Taixing Dongsheng Food and Technology Limited Company, Taixing 225411, China
 全文: PDF(1258 KB)   HTML
摘要:

目的:采用亚硝基胍(NTG)诱变结合96孔板高通量筛选方法筛选产耐高温谷氨酰胺转胺酶(MTG)的茂原链霉菌(Streptomyces mobaraensis)。方法:通过优化96孔板高通量测定MTG活性的方法、确定筛选温度和时间,建立了产耐高温MTG菌株的快速筛选方法;通过优化NTG诱变条件建立了筛选突变库;通过96孔板高通量初筛、摇瓶复筛获得了产耐高温MTG的突变株12-82,并通过摇瓶发酵对12-82所产MTG进行热稳定性分析。结果:采用2mg/ml NTG、pH8.0、60min的诱变条件获得突变株,将突变株的发酵上清液于70℃水浴7.5min,再在37℃空气浴、反应10min的条件下测定MTG活性,从5 200株突变株中筛选出5株产耐高温MTG的突变株,其中突变株12-82在50℃水浴60min以及70℃水浴1.5min的酶活残留率均比出发株高出近20%,且80℃保温2min仍有11.9%的酶活残留率。结论:利用NTG诱变结合96孔板高通量筛选的方法筛选到5株所产MTG热稳定性相对较高的突变株,其中突变株12-82在50℃、70℃和80℃的酶活残留率均有10%~20%的提高。这为高温食品加工领域所需耐高温MTG生产菌株的高效筛选提供了可行性方案。

关键词: 茂原链霉菌谷氨酰胺转胺酶热稳定性NTG诱变96孔板高通量筛选    
Abstract:

Objective:The aims are to obtain thermostable MTG from Streptomyces mobaraensis mutants library producing by nitrosoguanidine (NTG) radom mutagenesis and high-throughput screening.Methods:A rapid method of screening for thermostable MTG from Streptomyces mobaraensis is established by optimization of high-throughput MTG activity assay, screening temperature and time, respectively.Streptomyces mobaraensis mutants library is obtained by optimization of the concentration of NTG. A mutant 12-82 with thermostable MTG was chosen by preliminary screening and second screening from the 5200 mutants library. Results:The spores from Streptomyces mobaraensis were treated by NTG (2mg/ml, pH8.0) for 60 min, then the fermented supernatant was incubated at 70℃ for 7.5 min after fermentation in 96 well microtiters. Finally, MTG activity was determined at 37℃ air bath for 10 min.5 mutants with thermostable MTG were selected from 5200 mutants.When incubated at 50℃ for 60min and 70℃ for 1.5min, the relative activity of 12-82 was almost 20% higher than the parent strain.When incubated at 80℃ for 2min, the relative activity of 12-82 was 11.9%. Conclusion:5 mutants with thermostable MTG were selected by the screening method of NTG random mutagenesis combined with high-throughput screening.Among them, the relative activity of the mutant 12-82 was 10%~20% higher than that of the parent strain when incubated at 50℃,70℃ and 80℃, respectively.This established rapid method to obtain thermostable MTG is practical and the increased thermostability of MTG will be advantageous for its application in food processing at high temperature.

Key words: Streptomyces mobaraensis    Transglutaminase    Thermostablility    NTG mutagenesis    High-throughput screening in 96 well microtiters
收稿日期: 2015-04-29 出版日期: 2015-08-25
ZTFLH:  Q819  
基金资助:

中央高校基本科研业务费专项资金资助项目(78210203)

通讯作者: 金明飞     E-mail: mfjin@bio.ecnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.

GUO Wei-ting, ZHANG Hui, ZHA Dong-feng, HUANG Han-feng, HUANG Jing, GAO Hong-liang, CHANG Zhong-yi, JIN Ming-fei, LU Wei . A Rapid Method of Screening for Thermostable Transglutaminase from Streptomyces mobaraensis. China Biotechnology, 2015, 35(8): 83-89.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150812        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I8/83


[1] Ando H, Adachi M, Umeda K, et al. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agricultural and Biological Chemistry, 1989, 53(10): 2613-2617.

[2] Matheis G, Whitaker J R. A review: Enzymatic cross-linking of proteins applicable to foods. Journal of Food Biochemistry, 1987, 11(4): 309-327.

[3] Garcia Y, Wilkins B, Collighan R J, et al. Towards development of a dermal rudiment for enhanced wound healing response. Biomaterials, 2008, 29(7): 857-868.

[4] Cortez J, Bonner P L, Griffin M. Application of transglutaminases in the modification of wool textiles. Enzyme and Microbial Technology, 2004, 34(1): 64-72.

[5] O'Sullivan M M, Kelly A L, Fox P F. Effect of transglutaminase on the heat stability of milk: a possible mechanism. Journal of Dairy Science, 2002, 85(1): 1-7.

[6] Ahhmed A M, Kuroda R, Kawahara S, et al. Dependence of microbial transglutaminase on meat type in myofibrillar proteins cross-linking. Food Chemistry, 2009, 112(2): 354-361.

[7] 常忠义,柏俊华,高红亮,等. 海藻糖对微生物谷氨酰氨转胺酶热稳定性研究. 中国生物工程杂志, 2005, 25(4): 291-294. Chang Z Y, Bai J H, Gao H L, et al. Study on stabilization of microbial transglutaminase by trehalose. China Biotechnology, 2005, 25(4): 291-294.

[8] 李洪波,张兰威,崔艳华,等. 微生物源谷氨酰胺转氨酶基因工程菌株的研究进展. 食品工业科技, 2013, 34(17): 389-394. Li H B, Zhang L W, Cui Y H, et al. Research progress in genetically engineered strains of microbial transglutaminase. Science and Technology of Food Industry, 2013, 34(17): 389-394.

[9] Marx C K, Hertel T C, Pietzsch M. Random mutagenesis of a recombinant microbial transglutaminase for the generation of thermostable and heat-sensitive variants. Journal of Biotechnology, 2008, 136(3): 156-162.

[10] Buettner K, Hertel T C, Pietzsch M. Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis. Amino Acids, 2012, 42(2-3): 987-996.

[11] 常忠义,江波,王璋. 培养基组成对轮枝链霉菌合成谷氨酰胺转胺酶的影响. 无锡轻工大学学报, 2001, 20(1): 51-54. Chang Z Y, Jiang B, Wang Z. Effect of culture medium composition on the production of transglutaminase by Streptoverticillium. Journal of Wuxi University of Light Industry, 2001, 20(1): 51-54.

[12] 宋敏,曹娟,张颖颖,等. 不同菌落形态的链霉菌对产谷氨酰胺转胺酶的影响. 广西农业生物科学, 2008, 27(4):435-438. Song M, Cao J, Zhang Y Y, et al. Effect of different colonial morphologies on transglutaminase production of Streptomyces. Journal of Guangxi Agric and Biol Science, 2008, 27(4):435-438.

[13] Grossowicz N, Wainfan E, Borek E, et al. The enzymatic formation of hydroxamic acids from glutamine and asparagine. Journal of Biological Chemistry, 1950, 187(1): 111-125.

[14] 刘颖,田沛霖,陈佳,等. 产谷氨酰胺转胺酶菌株的高通量筛选. 西北农林科技大学学报(自然科学版), 2013, 41(06): 167-172. Liu Y, Tian P L, Chen J, et al. Novel high-throughput screening of Streptoverticillium mobaraense with high microbial transglutaminase yield. Journal of Northwest A&F University, 2013, 41(06): 167-172.

[15] Kieser T, Bibb M J, Buttner M J, et al. Practical Streptomyces Genetics. 2nd ed. Norwich United Kingdom The John Innes Foundation, 2000. 103-104.

[16] Salazar O, Sun L. Evaluating a screen and analysis of mutant libraries. In: Frances H A, George G. Directed Enzyme Evolution. New Jersey: Humana Press, 2003. 85-97.

[17] Heinzelman P, Snow C D, Smith M A, et al. SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. Journal of Biological Chemistry, 2009, 284(39): 26229-26233.

[18] Menéndez O, Rawel H, Schwarzenbolz U, et al. Structural changes of microbial transglutaminase during thermal and high-pressure treatment. Journal of Agricultural and Food Chemistry, 2006, 54(5): 1716-1721.

[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[3] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[4] 宋佳雯, 田苏, 张玉如, 王志珍, 常忠义, 高红亮, 步国建, 金明飞. 基因组重排筛选高产谷氨酰胺转胺酶菌株[J]. 中国生物工程杂志, 2017, 37(9): 105-111.
[5] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[6] 田淑翠, 牛延宁, 常忠义, 高红亮, 步国健, 金明飞. 常压室温等离子体(ARTP)诱变茂源链霉菌菌株[J]. 中国生物工程杂志, 2016, 36(9): 47-53.
[7] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[8] 刘雅清, 侯孝仑, 郭玮婷, 常忠义, 高红亮, 步国健, 鲁伟, 解秀娟, 金明飞. 甲壳素促进茂源链霉菌发酵产酶[J]. 中国生物工程杂志, 2015, 35(6): 40-45.
[9] 焦昀, 孔英俊, 高建萍, 康跻耀, 孙坤, 査圣华, 张贵锋, 王明林. 羟基化修饰对大鼠胶原热稳定性的影响研究[J]. 中国生物工程杂志, 2015, 35(11): 7-12.
[10] 裴正培, 李博, 张伟, 高红亮, 常忠义, 金明飞, 鲁伟, 步国建. 药用级微生物谷氨酰胺转胺酶的纯化工艺研究[J]. 中国生物工程杂志, 2014, 34(4): 53-58.
[11] 徐小静, 安会灵, 陈宁美, 杨婧, 周宜君. 盐芥ThMSD基因在大肠杆菌中的表达及特性研究[J]. 中国生物工程杂志, 2013, 33(4): 74-79.
[12] 陈佳, 金明飞, 谭玉静, 刘颖, 田沛霖, 常忠义, 步建国. NaCl对轮枝链霉菌产谷氨酰胺转胺酶的促进作用研究[J]. 中国生物工程杂志, 2013, 33(2): 54-58.
[13] 邓辉, 陈晟, 陈坚, 吴敬. T26P和A30P位点突变对Thermobifida fusca葡萄糖异构酶热稳定性及活性的影响[J]. 中国生物工程杂志, 2013, 33(10): 67-72.
[14] 张永明, 崔智峰, 平泽荣次, 吴海霞, 李国龙. 燕麦幼苗单胺氧化酶的热稳定性及催化特性研究[J]. 中国生物工程杂志, 2012, 32(07): 107-112.
[15] 许晓娟,张东旭,王淼,李江华,陈坚,堵国成. 吸水链霉菌发酵生产谷氨酰胺转胺酶的补料研究[J]. 中国生物工程杂志, 2009, 29(05): 78-82.