Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (11): 114-122    
综述     
芽孢杆菌(Bacillus sp.)脂肽抗生素发酵工艺及分离纯化
翟亚楠, 郭昊, 魏浩, 章栋梁, 姚树林, 郝慧, 别小妹
南京农业大学食品科学与技术学院 南京 210095
Current State in Fermentation, Isolation, and Purification of Lipopeptide Antibiotics from Bacillus sp.
ZHAI Ya-nan, GUO Hao, WEI Hao, ZHANG Dong-liang, YAO Shu-lin, HAO Hui, BIE Xiao-mei
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
 全文: PDF(626 KB)   HTML
摘要:

微生物脂肽具有抗菌谱广、热稳定性高、低毒、低抗药性等优点,近年来受到国内外广泛关注。综述了芽孢杆菌脂肽抗生素的发酵和分离纯化工艺的最新研究进展。在发酵工艺中,培养基营养组成、发酵温度、搅拌转速和通气量等参数对脂肽的产量至关重要,碳源、氮源和金属离子的组成与配比都会影响芽孢杆菌的生长与产物的合成,适当控制搅拌转速和通气量可提高脂肽产量。此外,近年来一些新型发酵工艺,如泡沫回流、固定化细胞、无泡发酵、固态发酵等被用于脂肽生产,通过改进发酵方式,在降低成本的同时提高了脂肽抗生素产量。抗菌脂肽分离纯化的主要方法包括超滤、吸附、泡沫分离及色谱法等,这些方法相对于传统的酸沉和萃取,具有可连续生产、脂肽提取量高及成本低等优点。同时,多种纯化方法的组合应用大幅度提高了抗菌脂肽的提取效果,有效降低了成本,是脂肽抗生素分离提取的发展方向。

关键词: 芽孢杆菌脂肽抗生素发酵分离纯化    
Abstract:

Microbial lipopeptide has the advantages of better thermostability, lower toxicity, lower antibiotic resistance, and a broader antimicrobial spectrum, therefore, have aroused great concern at home and abroad in recent years. The advanced development in fermentation, isolation and purification of lipopeptide antibiotics productivity from Bacillus sp. has been reviewed. In the fermentation process of lipopeptide, the effects of medium nutrition composition, process parameters like temperature, agitation rate and ventilation are critical for the lipopeptide yield. The composition of carbon source, nitrogen source and metal ion have a significant effect on the growth of Bacillus sp. and the product synthesis. High lipopeptide yield can be obtained by controlling agitation rate and ventilation. Furthermore, new fermentative technology, such as bubbleless fermentation, foam recycling fermentation, cell immobilized fermentation and solid state fermentation, have been applied to the producing process of lipopeptide recently. By improving these new methods, lipopeptide yield is greatly enhanced meanwhile the cost is reduced. Isolation and purification of lipopeptide include ultrafiltration, adsorption, foam separation and chromatographic purification. These methods are available for continuous production, and have higher extraction rate as well as lower cost compared to traditional methods like acid precipitation and extraction. By the combination of different purification methods, lipopeptide extraction amounts were largely increased while the cost is reduced effectively which emerges a good development prospect in the future.

Key words: Bacillus sp.    Lipopeptide antibiotics    Fermentation    Isolation    Purification
收稿日期: 2011-05-20 出版日期: 2011-11-25
ZTFLH:  Q815  
基金资助:

国家自然科学基金(30671460,30871753),"十二五"国家科技支撑计划(2011BAD23B05)、江苏省高等学校大学生实践创新训练计划(JSS1016)资助项目

通讯作者: 别小妹     E-mail: bxm43@njau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

翟亚楠, 郭昊, 魏浩, 章栋梁, 姚树林, 郝慧, 别小妹. 芽孢杆菌(Bacillus sp.)脂肽抗生素发酵工艺及分离纯化[J]. 中国生物工程杂志, 2011, 31(11): 114-122.

ZHAI Ya-nan, GUO Hao, WEI Hao, ZHANG Dong-liang, YAO Shu-lin, HAO Hui, BIE Xiao-mei. Current State in Fermentation, Isolation, and Purification of Lipopeptide Antibiotics from Bacillus sp.. China Biotechnology, 2011, 31(11): 114-122.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I11/114


[1] Souto G I,Correa O S,Montecchiaet M S,et al. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Journal of Applied Microbiology,2004,97:1247-1256.

[2] Kim P I,Bai H,Bai D,et al. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied Microbiology,2004,97:942-949.

[3] Ongena M,Jacques P,Touré Y,et al. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology,2005,69:29-38.

[4] Kowall M,Vater J,Kluge B,et al. Separation and characterization of aurfactin isoforms produced by Bacillus subtilis OKB 105. Journal of Colloid and Interface Science,1998,204:1-8.

[5] Stein T. Bacillus subtilis antibiotics: structure, syntheses and specific functions. Molecular Microbiology,2005,56:845-857.

[6] Banat I M,Makkar R S,Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology,2000,53:495-508.

[7] 孙立军. 植物内生菌Bacillus amyloliquefaciens ES-2的分离筛选及其抗菌物质的研究.南京:南京农业大学,食品科技学院,2003. Sun L J. Isolation of endophytic Bacillus amyloliquefaciens ES-2 and studies on its antimicrobial substances. Nanjing:Nanjing Agricultural University,College of Food Science and Technology,2003.

[8] Roongsawang N,Washio K,Morikawa M. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Science,2011,12,141-172.

[9] Yakimov M,Timmis K,Wray V,et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Applied and Environmental Microbiology,1995,61(5):1706-1713.

[10] 孙力军,陆兆新,别小妹,等.培养基对解淀粉芽孢杆菌ES-2菌株产抗菌脂肽的影响.中国农业科学,2008,41(10):3389-3398. Sun L J,Lu Z X,Bie X M,et al. Scientia Agricultura Sinica,2008,41(10):3389-3398.

[11] 方传记,陆兆新,孙立军,等.淀粉液化芽孢杆菌抗菌脂肽发酵培养基及发酵条件的优化.中国农业科学,2008,41(2):533-539. Fang C J,Lu Z X,Sun L J,et al. Scientia Agricultura Sinica,2008,41(2):533-539.

[12] Davis D A,Lynch H C,Varley J. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme and Microbial Technology,1999,25:322-329.

[13] Sen R. Response surface optimization of the critical media components for the production of surfactin. Journal of Chemical Technology and Biotechnology,1997,68:263-270.

[14] Cooper D G,MacDonald C R,Duff S J B,et al. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied and Environmental Microbiology,1981,42:408-412.

[15] Wei Y H,Chu I M. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme and Microbial Technology,1998,22:724-728.

[16] Wei Y H,Chu I M. Mn2+ improves surfactin production by Bacillus subtilis. Biotechnology Letters,2002,24:479-482.

[17] Reuter K,Mofid M R,Marahiel M A,et al. Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 40-phosphopantetheinyl transferase superfamily. The EMBO Journal,1999,18:6823-6831.

[18] Kinsinger R F,Shirk M C,Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. Journal of Bacteriology,2003,185:5627-5631.

[19] Wei Y H,Lai C C,Chang J S. Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochemistry,2007,42:40-45.

[20] Sen R,Swaminathan T. Application of response-surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin. Applied Microbiology and Biotechnology,1997,47:358-363.

[21] Yeh M S,Wei Y H,Chang J S. Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochemistry, 2006,41:1799-1805.

[22] 魏浩,陆兆新, 吕凤霞,等. Bacillus amyloliquefaciens ES-2发酵产抗菌脂肽消泡剂的筛选及脂肽的提取和纯化. 中国生物工程杂志,2011,31(2):85-90. Wei H,Lu Z X,Lv F X,et al. China Biotechnology,2011,31(2):85-90.

[23] Sen R,Swaminathan T. Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochemical Engineering Journal,2004,21:141-148.

[24] Chtioui O,Dimitrov K,Gancel F,et al. Biosurfactants production by immobilized cells of Bacillus subtilis ATCC 21332 and their recovery by pertraction. Process Biochemistry,2010,45(11):1795-1799.

[25] Gancel F,Montastruc L,Liu T,et al. Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochemistry,2009,44(9):975-978.

[26] Fox S L,Bala G A. Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresource Technology,2000,75:235-240.

[27] Kim K M,Lee J Y,Kim C K,et al. Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Archives of Pharmacal Research,2009,32:711-715.

[28] Ohno A,Ano T,Shoda M. Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin A, by Bacillus subtilis NB22. Process Biochemistry,1996,31:801-806.

[29] Coutte F,Lecouturier D,Yahia S A,et al. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Applied Microbiology and Biotechnology,2010,87:499-507.

[30] Keller K,Friedmann T,Boxman X. The bioseparations need for tomorrow. Trends in Biotechnology,2001,19:438-441.

[31] Sen R, Swaminathan T. Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochemistry,2005,40:2953-2958.

[32] Chen H L,Chen Y S,Juang R S. Separation of surfactin from fermentation broths by acid precipitation and two-stage dead-end ultrafiltration processes. Journal of Membrane Science,2007,299:114-121.

[33] Liu T,Montastruc L,Gancel F,et al. Integrated process for production of surfactin Part 1: Adsorption rate of pure surfactin onto activated carbon. Biochemical Engineering Journal,2007,35:333-340.

[34] Wang Y,Lu Z X,Bie X M,et al. Separation and extraction of antimicrobial lipopeptides produced by Bacillus amyloliquefaciens ES-2 with macroporous resin. European Food Research and Technology,2010,231:189-196.

[35] Chen H L,Lee Y S,Wei Y H,et al. Purification of surfactin in pretreated fermentation broths by adsorptive removal of impurities. Biochemical Engineering Journal,2008,40:452-459.

[36] Davis D A,Lynch H C,Varley J. The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzyme and Microbial Technology,2001,28:346-354.

[36] Gong G,Zheng Z,Chen H,et al. Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technology and Biotechnology,2009,47(1):27-31.

[38] Nakayama S,Takahashi S,Hirai M,et al. Isolation of new variants of surfactin by a recombinant Bacillus subtilis. Applied Microbiology and Biotechnology,1997,48(1):80-82.

[39] Lee S C,Sun H K,Park I H,et al. Isolation, purification, and characterization of novel fengycin S from Bacillus amyloliquefaciens LSC04 degrading-crude oil. Biotechnology and Bioprocess Engineering,2010,15:246-253.

[40] 艾嘉,陆兆新,别小妹,等. 高效液相色谱法测定发酵液中表面活性素的含量.食品科学,2009,30(6):188-190. Ai J,Lu Z X,Bie X M,et al. Food Science,2009,30(6):188-190.

[41] Sun L J,Lu Z X,Bie X M,et al. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World Journal of Microbiology and Biotechnology,2006,22:1259-1266.

[42] Mukherjee S,Das P,Sivapathasekaran C,et al. Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification. Letters in Applied Microbiology,2009,48(3):281-288.

[43] Lin S C,Minton M A,Sharma M M,et al. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Applied and Environmental Microbiology,1994,60(1):31-38.

[44] 辛秀兰. 生物分离与纯化技术. 北京: 科学出版社, 2008. 189. Xin X L. Biological Separation and Purification Technology. Beijing: Science Press, 2008. 189.

[45] Dimitrov K,Gancel F,Montastruc L,et al. Liquid membrane extraction of bio-active amphiphilic substances: Recovery of surfactin. Biochemical Engineering Journal,2008,42:248-253.

[46] 黄翔峰,彭开铭,刘佳,等. 生物表面活性素分离纯化技术进展.化工进展,2009,28(10):1820-1827. Huang X F,Peng K M,Liu J,et al. Chemical Industry and Engineering Progress,2009,28(10):1820-1827.

[1] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[2] 张玲,曹小丹,杨海旭,李文蕾. 连续流层析技术在亲和层析中的应用及生产放大评估[J]. 中国生物工程杂志, 2021, 41(6): 38-44.
[3] 高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.
[4] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[5] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[6] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[7] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[8] 杨娜,吴群,徐岩. 解淀粉芽孢杆菌合成surfactin的发酵策略优化 *[J]. 中国生物工程杂志, 2020, 40(7): 51-58.
[9] 梅雨薇,杨子云,于樊,龙旭伟. 生物表面活性剂脂肽的发酵生产及抑菌应用研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 105-116.
[10] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[11] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[12] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[13] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[14] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[15] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.