Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (8): 41-48    DOI: 10.13523/j.cb.2003057
技术与方法     
LbCpf1基因的原核表达、纯化与体外切割检测 *
吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生()
东北林业大学生命科学学院 哈尔滨 150040
Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay
LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng()
College of Life Science, Northeast Forestry University, Harbin 150040, China
 全文: PDF(1032 KB)   HTML
摘要:

目的:为获得具有体外切割活性的LbCpf1蛋白。方法: 将毛螺菌科细菌ND2006(Lachnospiraceae bacterium ND2006)的LbCpf1基因编码区连接至pHis*6(IV),构建原核表达质粒CRISPR-LbCpf1-6*His。将该重组质粒转化BL21(DE3)感受态细胞,IPTG诱导目的蛋白表达,经镍柱亲和层析纯化、透析除盐和凝胶电泳检测等步骤获得重组蛋白,进行体外切割试验鉴定重组蛋白切割活性。结果: 双酶切鉴定和测序结果表明成功构建重组质粒CRISPR-LbCpf1-6*His,经转化后获得含有重组质粒CRISPR-LbCpf1-6*His的BL21(DE3)蛋白表达菌株。将菌株接种于37 ℃,160 r/min,IPTG终浓度为0.5 mmol/L的条件下诱导5 h,最终镍柱纯化除盐后的LbCpf1蛋白终浓度可达400 ng/μl,在体外适宜条件下,该重组蛋白可与成熟的crRNA结合切断标靶DNA。结论: 获得的高纯度LbCpf1蛋白具有体外切割活性,可用于后续基因编辑研究。

关键词: LbCpf1蛋白原核表达镍柱纯化体外切割检测    
Abstract:

Compared to Cas9, LbCpf1 has higher targeting specificity and other advantages in eukaryotic cells. Therefore, this study aims to obtain the LbCpf1 protein that is cleaved by in vitro activity. To achieve that, pY016 plasmids containing LbCpf1 gene coding region of Lachnospiraceae bacterium ND2006 were double-enzyme digested to obtain the CRISPR-LbCpf1 gene CDS. Next, the prokaryotic expression plasmid CRISPR-LbCpf1-6*His was constructed by ligating the CRISPR-LbCpf1 gene sequence to the prokaryotic expression vector pHis*6(IV) containing the 6*His tag. Afterwards, high yields of recombinant plasmids were obtained from transformed DH5α competent cells. Then the obtained plasmids were identified by double-enzyme digestion and sequencing, the results of which showed the correct recombinant plasmids were constructed successfully. The correct plasmids were subsequently transformed into E. coli BL21 (DE3) competent cells to generate a BL21(DE3) expression strain containing the recombinant plasmid CRISPR-LbCpf1-6*His, which were then inoculated and cultivated at 37°C, on a 160 r/min shaker. The expression of target gene was induced by IPTG (final concentration 0.5 mmol/L) for 5 hours, and the production was purified by Ni column affinity chromatography, dialysis and desalting, SDS-PAGE gel electrophoresis and other steps to obtain the recombinant protein. The final concentration of the protein can reach approximately 400 ng/μl. Finally, via in vitro cleavage assay, it showed the protein was able to process the pre-crRNA in an appropriate environment and bind to the mature CRISPR RNA (crRNA) to cleave the target DNA in vitro, which verified the recombinant protein cleavage activity. In conclusion, this study provides a method to obtain high-purity LbCpf1 protein, supporting the usage of LbCpf1 in further genetic editing research.

Key words: LbCpf1    Prokaryotic expression    Nickel column purification    In vitro cleavage activity assay
收稿日期: 2020-03-23 出版日期: 2020-09-10
ZTFLH:  Q78  
基金资助: * 黑龙江省大学生创新创业训练计划(201910225232);黑龙江省自然科学基金(C2016012)
通讯作者: 王春生     E-mail: wangchunsheng79@nefu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吕一凡
李更东
薛楠
吕国梁
时邵辉
王春生

引用本文:

吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.

LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay. China Biotechnology, 2020, 40(8): 41-48.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2003057        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I8/41

图1  质粒pHis*6经Hind Ⅲ和XhoⅠ双酶切电泳图和质粒图
图2  质粒pY016双酶切产物电泳图和质粒图
Sequence Note
crRNA 5'-AGCUUGCCGGUUUUUUAGUCGUGCUGCUUCAUGUGUUUUUGUUUCAAAGAUU
AAAUAAUUUCUACUAAGUGUAGAUGGUCAGGUCUGGGUGUGGGGUGA-3'
Homology-free random sequenceTarget sequence
表1  
primer name 5'-3' OD
crRNA-2F CCCTTCCTCGTCCACCAT 2
crRNA-2R ACCTAAGAACTTGGGAACAGC 2
表2  靶序列PCR引物
Protein added LbCpf1 crRNA DNA
423 ng 6.2 23.7 1
282 ng 4.1 23.7 1
表3  体外切割过程中LbCpf1,crRNA和DNA的摩尔比
图3  CRISPR-LbCpf1-6*His双酶切产物电泳图和质粒图
图4  IPTG诱导LbCpf1的SDS-PAGE分析
图5  重组蛋白LbCpf1的表达类型分析
图6  目的重组蛋白LbCpf1的纯化分析
图7  转录模板和crRNA的琼脂糖凝胶电泳分析
图8  靶序列电泳图和crRNA与靶序列结合的示意图
图9  LbCpf1蛋白的体外切割检测
[1] Zetsche B, Gootenberg J S, Abudayyeh O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015,163(3):759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[2] Gao P, Yang H, Rajashankar K R, et al. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res, 2016,26(8):901-913.
doi: 10.1038/cr.2016.88 pmid: 27444870
[3] Fonfara I, Richter H, Bratovič M, et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA . Nature, 2016,532(7600):517-521.
doi: 10.1038/nature17945 pmid: 27096362
[4] Zetsche B, Heidenreich M, Mohanraju P, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol, 2017,35(1):31-34.
doi: 10.1038/nbt.3737 pmid: 27918548
[5] Bin Moon S, Lee J M, Kang J G, et al. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang. Nat Commun, 2018,9(1):3651.
doi: 10.1038/s41467-018-06129-w pmid: 30194297
[6] Park H M, Liu H, Wu J, et al. Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo. Nat Commun, 2018,9(1):3313.
doi: 10.1038/s41467-018-05641-3 pmid: 30120228
[7] Wu H, Liu Q, Shi H, et al. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell Mol Life Sci, 2018,75(19):3593-3607.
doi: 10.1007/s00018-018-2810-3 pmid: 29637228
[8] Xu R, Qin R, Li H, et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J, 2017,15(6):713-717.
doi: 10.1111/pbi.12669 pmid: 27875019
[9] Gao L, Cox D B T, Yan W X, et al. Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol, 2017,35(8):789-792.
doi: 10.1038/nbt.3900 pmid: 28581492
[10] Yamano T, Zetsche B, Ishitani R, et al. Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Moleculer Cell, 2017,67(4):633-645.
[11] Lei C, Li S Y, Liu J K, et al. The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res, 2017,45(9):e74.
doi: 10.1093/nar/gkx018 pmid: 28115632
[12] Moreno-Mateos M A, Fernandez J P, Rouet R, et al. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun, 2017,8(1):2024.
doi: 10.1038/s41467-017-01836-2 pmid: 29222508
[13] Kim D, Kim J, Hur J K, et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol, 2016,34(8):863-868.
doi: 10.1038/nbt.3609 pmid: 27272384
[14] Kleinstiver B P, Tsai S Q, Prew M S, et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol, 2016,34(8):869-874.
doi: 10.1038/nbt.3620 pmid: 27347757
[15] Dong D, Ren K, Qiu X, et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature, 2016,532(7600):522-526.
doi: 10.1038/nature17944 pmid: 27096363
[16] Yamano T, Nishimasu H, Zetsche B, et al. Crystal Structure of Cpf1 in complex with Guide RNA and Target DNA. Cell, 2016,165(4):949-962.
doi: 10.1016/j.cell.2016.04.003 pmid: 27114038
[17] Singh D, Mallon J, Poddar A, et al. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc Natl Acad Sci U S A, 2018,115(21):5444-5449.
doi: 10.1073/pnas.1718686115 pmid: 29735714
[18] Stella S, Alcón P, Montoya G. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature, 2017,547(7664):476.
doi: 10.1038/nature23300 pmid: 28678773
[19] Hu X, Wang C, Liu Q, et al. Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics, 2017,44(1):71-73.
doi: 10.1016/j.jgg.2016.12.001 pmid: 28043782
[20] Kim Y, Cheong S A, Lee J G, et al. Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol, 2016,34(8):808-810.
doi: 10.1038/nbt.3614 pmid: 27272387
[21] Watkins-Chow D E, Varshney G K, Garrett L J, et al. Highly efficient Cpf1-mediated gene targeting in mice following high concentration pronuclear injection. G3 (Bethesda), 2017,7(2):719-722.
doi: 10.1534/g3.116.038091
[22] Hur JK, Kim K, Been K W, et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol, 2016,34(8):807-808.
doi: 10.1038/nbt.3596 pmid: 27272385
[23] Liu C, Zhang L, Liu H, et al. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.[J]. Controlled Release, 2017,266(11):17-26.
doi: 10.1016/j.jconrel.2017.09.012
[24] Safari F, Zare K, Negahdaripour M, et al. CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci, 2019,9:36.
doi: 10.1186/s13578-019-0298-7 pmid: 31086658
[25] Li T, Zhu L, Xiao B, et al. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells. Biotechnol Adv. 2019,37(1):21-27.
doi: 10.1016/j.biotechadv.2018.10.013 pmid: 30399413
[26] Gao Z, Herrera-Carrillo E, Berkhout B. Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA RNA Biol 2018,15(12):1458-1467.
doi: 10.1080/15476286.2018.1551703 pmid: 30470168
[27] Fernandez J P, Vejnar C E, Giraldez A J et al. Optimized CRISPR-Cpf1 system for genome editing in zebrafish. Methods. 2018,150(11):11-18.
doi: 10.1016/j.ymeth.2018.06.014
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[3] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[4] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[5] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[6] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[7] 李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.
[8] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[9] 何亚南,孙钰椋,任雅坤,梁盛英,杨芬,刘彦礼,林俊堂. 金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *[J]. 中国生物工程杂志, 2018, 38(12): 14-20.
[10] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[11] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.
[12] 祖力皮也·吐尔逊, 曹春宝, 温浩, 丁剑冰, 德力夏提·依米提. 细粒棘球蚴EgG1Y162基因进化分析、表达及鉴定[J]. 中国生物工程杂志, 2016, 36(4): 78-87.
[13] 周亮, 叶浩, 周瓅, 关文, 李京敬, 郜尽, 韩伟, 俞雁. 人CXCL4蛋白原核表达与纯化[J]. 中国生物工程杂志, 2016, 36(1): 7-13.
[14] 黄健, 黄美容, 朱杰华, 骆诗露, 闵迅. 肺炎链球菌SP0306蛋白的表达纯化及结晶研究[J]. 中国生物工程杂志, 2015, 35(6): 21-25.
[15] 龚隆财, 罗镇明, 杨雁青, 王振宇, 向军俭, 王宏. cTnI-linker-TnC融合蛋白的原核表达及鉴定[J]. 中国生物工程杂志, 2015, 35(4): 48-53.