Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (7): 51-58    DOI: 10.13523/j.cb.2001011
技术与方法     
解淀粉芽孢杆菌合成surfactin的发酵策略优化 *
杨娜,吴群(),徐岩()
工业生物技术教育部重点实验室 江南大学生物工程学院 酿造微生物学与应用酶学研究室 无锡 214122
Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens
YANG Na,WU Qun(),XU Yan()
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Center for Brewing Science and Enzyme Technology, Wuxi 214122, China
 全文: PDF(1653 KB)   HTML
摘要:

Surfactin作为一种绿色生物表面活性素在多种领域均有潜在的应用价值,但是在生产过程中存在着泡沫难以控制的问题,阻碍了其实现工业化生产。因此在7L发酵罐水平探究了适合surfactin工业化生产的最佳发酵策略。研究结果表明,过量添加消泡剂会对微生物的生长造成不利影响而且会增加生产成本,以有机硅和大豆油为消泡剂时surfactin产量分别为1.42g/L和1.96g/L。通过改进发酵罐采用泡沫分离的发酵策略,不仅可以经济有效地解决泡沫难以控制的问题,而且可以实现surfactin的原位分离,surfactin产量为2.39g/L;基于泡沫分离式发酵,控制pH=7后surfactin产量提高至3.45g/L;又进一步通过控制DO≥20%后产量提高至5.07g/L。最后,将泡沫分离耦合pH、溶解氧控制及恒速补料,控制pH=7、DO≥20%、恒速流加速度1.39ml/min,可以将surfactin产量显著提高至6.04g/L,与添加消泡剂相比,产量提高了4.25倍。以上结果为surfactin的工业化生产提供了依据。

关键词: Surfactin泡沫分离耦合发酵策略    
Abstract:

Surfactin, as a green biosurfactant, can be widely applied in various fields. However, the severe foaming arising in the fermentation process obstructed the industrial production of surfactin. Therefore, different strategies were explored to solve this problem in a 7L bioreactor. The results showed that excessive addition of antifoam would inhibit microbial growth and increase the production costs. The surfactin yield were 1.42g/L and 1.96g/L by using organic silicon and soybean oil as antifoams, respectively. However, foam fractionation in a modified bioreactor was more economical and effective for controlling the foaming and separating surfactin in situ. After fermentation coupled with foam fractionation, the surfactin yield was 2.39g/L. Based on the strategy of foam fractionation, the surfactin yield increased to 3.45g/L after controlling pH at 7. Moreover, it increased to 5.07g/L after controlling pH at 7 and DO≥20%. Furthermore, the surfactin yield increased to 6.04g/L by coupling foam fractionation with the regulation of pH, DO, and feeding (a constant rate of 1.39ml/min), which was 4.25 times higher than using antifoam. An efficient strategy is provided to control the foaming during fermentation and increase the surfactin yield, which can promote the industrial production of surfactin.

Key words: Surfactin    Foam fractionation    Coupling    Fermentation strategy
收稿日期: 2020-01-02 出版日期: 2020-08-13
ZTFLH:  Q185  
基金资助: * 国家重点研发计划(2018YFD0400402);国家自然科学基金资助项目(31530055)
通讯作者: 吴群,徐岩     E-mail: wuq@jiangnan.edu.cn;yxu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨娜
吴群
徐岩

引用本文:

杨娜,吴群,徐岩. 解淀粉芽孢杆菌合成surfactin的发酵策略优化 *[J]. 中国生物工程杂志, 2020, 40(7): 51-58.

YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens. China Biotechnology, 2020, 40(7): 51-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2001011        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I7/51

图1  分别添加有机硅消泡剂(a)和大豆油消泡剂(b)后发酵过程的变化
图2  泡沫分离式发酵示意图
图3  泡沫分离对发酵的影响
图4  泡沫分离耦合pH控制
图5  泡沫分离耦合pH及DO控制
图6  泡沫分离耦合pH、DO控制及恒速补料
[1] Hadia N J, Ottenheim C, Li S, et al. Experimental investigation of biosurfactant mixtures of surfactin produced by Bacillus Subtilis for EOR application. Fuel, 2019,251:789-799. DOI: 10.1016/j.fuel.2019.03.111.
doi: 10.1016/j.fuel.2019.03.111
[2] Najmi Z, Ebrahimipour G, Franzetti A, et al. In situ downstream strategies for cost-effective bio/surfactant recovery. Biotechnology and Applied Biochemistry, 2018,65(4):523-532.
doi: 10.1002/bab.1641 pmid: 29297935
[3] Cochrane S A, Vederas J C. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Medicinal Research Reviews, 2016,36(1):4-31.
doi: 10.1002/med.21321 pmid: 24866700
[4] Renterghem L V, Roelants S L K W, Baccile N, et al. From lab to market: an integrated bioprocess design approach for new-to-nature biosurfactants produced by Starmerella bombicola. Biotechnology and Bioengineering, 2018,115(5):1195-1206.
doi: 10.1002/bit.26539 pmid: 29288587
[5] Liu W, Wu Z L, Wang Y J, et al. Recovery of isoflavones from the soy whey wastewater using two-stage batch foam fractionation. Industrial & Engineering Chemistry Research, 2013,52(38):13761-13767.
[6] Jiang J J, Zu Y Q, Li X Y, et al. Recent progress towards industrial rhamnolipids fermentation: process optimization and foam control. Bioresource Technology, 2020,298:1-10. DOI: 10.1016/j.biortech.2019.122394.
doi: 10.1016/j.biortech.2019.122394
[7] 魏浩, 陆兆新, 吕凤霞, 等. Bacillus amyloliquefaciens ES-2 发酵产抗菌脂肽消泡剂的筛选及脂肽的提取和纯化. 中国生物工程杂志, 2011,31(2):85-90.
Wei H, Lu Z X, Lv F X, et al. The select ion of defoamer for the antmicrobial lipopeptide fermentation by Bacillus amyloliquefaciens ES-2 and extraction and purification of lipopeptide. China Biotechnology, 2011,31(2):85-90.
[8] Li R, Zhang Y, Chang Y, et al. Role of foam drainage in producing protein aggregates in foam fractionation. Colloids Surf B Biointerfaces, 2017,158:562-568. DOI: 10.1016/j.colsurfb.2017.07.040.
doi: 10.1016/j.colsurfb.2017.07.040 pmid: 28746910
[9] Chen C Y, Baker S C, Darton R C. Batch production of biosurfactant with foam fractionation. Journal of Chemical Technology and Biotechnology, 2006,81(12):1923-1931.
[10] Huang D, Wu Z L, Liu W, et al. A novel process intensification approach of recovering creatine from its wastewater by batch foam fractionation. Chemical Engineering and Processing: Process Intensification, 2016,104:13-21.DOI: 10.1016/j.cep.2016.02.005.
doi: 10.1016/j.cep.2016.02.005
[11] Díaz De Rienzo M A, Kamalanathan I D, Martin P J. Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation. Process Biochemistry, 2016,51(7):820-827.
doi: 10.1016/j.procbio.2016.04.007
[12] Zhang D, Dong K, Xu D, et al. Process improvement for fermentation coupling with foam separation: a convenient strategy for cell recycle. Asia-Pacific Journal of Chemical Engineering, 2015,10(3):466-475.
[13] Winterburn J B, Russell A B, Martin P J. Characterisation of HFBII biosurfactant production and foam fractionation with and without antifoaming agents. Applied Microbiology and Biotechnology, 2011,90(3):911-920.
doi: 10.1007/s00253-011-3137-2 pmid: 21311879
[14] Mnif I, Ghribi D. Lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers, 2015,104(3):129-147.
doi: 10.1002/bip.22630 pmid: 25808118
[15] Liu X Y, Ren B, Gao H, et al. Optimization for the production of surfactin with a new synergistic antifungal activity. [2012-05-18]. https://doi.org/10.1371/journal.pone.0034430.
[16] Yeh M S, Wei Y H, Chang J S. Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochemistry, 2006,41(8):1799-1805.
[17] Alonso S, Martin P J. Impact of foaming on surfactin production by Bacillus subtilis: Implications on the development of integrated in situ foam fractionation removal systems. Biochem Eng J, 2016,110:125-133.DOI: 10.1016/j.bej.2016.02.006.
doi: 10.1016/j.bej.2016.02.006
[18] Silva M T S D, Soares C M F, Lima A S, et al. Integral production and concentration of surfactin from Bacillus sp. ITP-001 by semi-batch foam fractionation. Biochemical Engineering Journal, 2015,104:91-97.DOI: 10.1016/j.bej.2015.04.010.
doi: 10.1016/j.bej.2015.04.010
[19] 郅岩. 芽孢杆菌高效合成表面活性素的代谢机制及功能研究. 无锡:江南大学, 2017.
Zhi Y. Metabolic mechanism of highly-efficient biosynthesis of surfactin and its function. Wuxi:Jiangnan University, 2017.
[20] Zhi Y, Wu Q, Xu Y. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. [2017-1-23]. https://www.nature.xilesou.top/articles/srep40976. .
[21] Albalasmeh A A, Berhe A A, Ghezzehei T A. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 2013,97(2):253-261.
pmid: 23911443
[22] 曹家明. 消泡剂在生物发酵过程中的应用研究进展. 中国酿造, 2019,38(9):19-23.
Cao J M. Advances on the application of defoamers in biological fermentation. China Brewing, 2019,38(9):19-23.
[23] Koch V, Ruffer H M, Schugerl K, et al. Effect of antifoam agents on the medium and microbial cells properties and process performance in small and large bioreactors. Process Biochemistry, 1995,30(5):435-446.
doi: 10.1016/0032-9592(94)00029-8
[24] Cho J H, Kim Y B, Kim E K. Optimization of culture media for Bacillus species by statistical experimental design methods. Korean Journal of Chemical Engineering, 2009,26(3):754-759.
doi: 10.1007/s11814-009-0126-6
[25] Davis D A, Lynch H C, Varley J. The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzyme and Microbial Technology, 2001,28(4-5):346-354.
pmid: 11240190
[1] 王卫, 李忠海, 黎继烈, 曾泊全. 赤霉素发酵与大孔树脂吸附过程耦合工艺优化[J]. 中国生物工程杂志, 2012, 32(11): 70-74.
[2] 王卫, 李忠海, 黎继烈, 曾泊全. 赤霉素发酵与大孔树脂吸附过程耦合工艺优化[J]. 中国生物工程杂志, 2012, 32(11): 70-74.
[3] 唐小红, 常影, 黄和, 高振, 尹继龙, 纪晓俊. 微藻在CO2生物捕集及废水生态修复领域的研究进展[J]. 中国生物工程杂志, 2011, 31(9): 124-131.
[4] 曹小红,焦润芝,王春玲,闫乐,鲁梅芳. Bacillus natto TK-1 产脂肽的结构鉴定及其诱导MCF-7细胞凋亡的研究[J]. 中国生物工程杂志, 2009, 29(02): 54-58.
[5] 曹小红,廖振宇,王春玲,哈志瑞,杨亚静,鲁梅芳,励建荣. Bacillus natto TK-1产脂肽的纯化、抑菌活性及其表面活性剂特性[J]. 中国生物工程杂志, 2008, 28(1): 44-48.
[6] 张峻,陈颖,陈晓云,齐欣,魏雪生. 亚栖热菌透性化细胞的耦合固定化研究[J]. 中国生物工程杂志, 2007, 27(11): 32-36.