Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (01): 115-123    
综述     
面向先进生物燃料的合成生物学
刘斌1, 陈方2, 陈云伟2, 丁陈君2, 邓勇2
1. 中国科学院生命科学与生物技术局 北京 100864;
2. 中国科学院国家科学图书馆成都分馆 成都 610041
Synthetic Biology and Its Applications in Next-Generation Advanced Biofuels
LIU Bin1, CHEN Fang2, CHEN Yun-wei2, DING Chen-jun2, DENG Yong2
1. Bureau of Life Science and Biotechnology, Chinese Academy of Sciences, Beijing 100864,China;
2. Chengdu Branch of the National Science Library, Chinese Academy of Sciences, Chengdu 610041,China
 全文: PDF(634 KB)   HTML
摘要:

先进生物燃料一般指来自于非粮食原料的交通运输用生物燃料。近年来,先进生物燃料的发展引起了众多国家的浓厚兴趣,然而,先进生物燃料正处于关键的技术研发阶段,还需经过大量研发以突破技术障碍和示范生产活动后方能进行商业化部署。过去10年内,合成生物学研究大量兴起并不断取得突破,使人们有可能人工设计构建新的高效生命系统,克服生物燃料发展的技术瓶颈,进行先进生物燃料的生产。在介绍先进生物燃料与合成生物学的发展现状的基础上,分析了合成生物学在先进生物燃料研发中的重要价值与研发进展,探讨了合成生物学的发展潜力。

关键词: 合成生物学先进生物燃料细胞工厂基因工程    
Abstract:

Advanced biofuels are high-energy liquid transportation fuels derived from sustainable biomass feedstocks including algae, which has attracted attention during the past few years as renewable and environmentally friendly alternative fuels, but many obstacles still remain in technical development and demonstration. In recent years, there has been a lot of breakthrough and progress in synthetic biology area, and therefore synthetic biological research has shown promising prospects in many areas, especially in that of advanced biofuels. The development of advanced biofuels and synthetic biology and its role in biofuels research and development is thoroughly demonstrated, and the opportunities and challenges of synthetic biology are also discussed.

Key words: Advanced biofuel    Synthetic biology    Cell factories    Gene engineering
收稿日期: 2011-11-15 出版日期: 2012-01-25
ZTFLH:  Q78  
基金资助:

中国科学院知识创新工程重要方向资助项目(KSCX2-EW-G-9)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘斌, 陈方, 陈云伟, 丁陈君, 邓勇. 面向先进生物燃料的合成生物学[J]. 中国生物工程杂志, 2012, 32(01): 115-123.

LIU Bin, CHEN Fang, CHEN Yun-wei, DING Chen-jun, DENG Yong. Synthetic Biology and Its Applications in Next-Generation Advanced Biofuels. China Biotechnology, 2012, 32(01): 115-123.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I01/115


[1] Dwivedi P, et al. Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments. Energy for Sustainable Development, 2009,13(3):174-182.

[2] Nuffield Council on Bioethics. Biofuels: ethical issues. .http://www.nuffieldbioethics.org/sites/default/files/Biofuels_ethical_issues_FULL%20REPORT_0.pdf.

[3] UNEP. Towards sustainable production and use of resources: Assessing Biofuels. 2009.http://www.unep.fr/scp/rpanel/pdf/Assessing_Biofuels_Full_Report.pdf.

[4] Zeng B, Wu C. Systems Genetics and Synthetic Biology-Bio-engineering Industrialization in 21st Century. Biotechnology Bulletin,2008, (5):67-71.

[5] Zhao X, Bai F, Li Y. Application of systems biology and synthetic biology in strain improvement for biofuel production, Chinese Journal of Biotechnology, 2011, 26(7):880-887.

[6] Savage D F, Way J, Silver P A. Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production .ACS Chem Biol, 2008,3(1):13-16.

[7] Lee S, Chou H, Ham T, et al . Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 2008,19(6):556-563.

[8] Alper H. Gregory Stephanopoulos, Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nature Reviews Microbiology, 2009,7(10),715-723.

[9] Clementina D, Fabio F, Ramon G. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microbial Cell Factories, 2010, 9(3):25.

[10] US White House. The Energy Independence and Security Act of 2007. .http://www.whitehouse.gov/the_press_office/The_Energy_Independence_and_Security_Act_of_2007/.

[11] IEA, Technology Roadmap-Biofuels for Transport. 2011. . http://www.iea.org/papers/2011/Biofuels_Roadmap.pdf.

[12] BIO. The Value Proposition for Cellulosic and Advanced Biofuels Under the Federal Renewable Fuel Standard. 2011. . http://bio.org/ind/pubs/201104_rfs_whitepaper.pdf.

[13] Dean B. Théorie physico‐chimique de la vie at qénérations spontanées. Science, 1911,33(843),304-305.

[14] Benner S A, Sismour A M. Synthetic Biology. Nature, 2005,6(7):533-543.

[15] Vastag B. Thomas H. Murray: Society Must Weigh "Massive" Potential Benefits Against Risks of Synthetic Life. 2010. . http://www.aaas.org/news/releases/2010/1116hitachi_synth_bio.shtml? sa_campaign=Inter nal_Ads/AAAS/RSS_News/2010-11-16/.

[16] BIO. Current Uses of Synthetic Biology for Chemicals and Pharmaceuticals. 2010. http://bio.org/ind/syntheticbiology/Synthetic_Biology_Everyday_Products.pdf.

[17] Cello J, Paul A V, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 2002, 297(5583):1016-1018.

[18] Smith H O, Hutchison C A, Pfannkocb C, et al. Generating a synthetic genome by whole genome assembly:phiXl74 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA, 2003, 100 (26): l5440-l5445.

[19] Gibson D G, Benders G A, Andrews-Pfannkoeh C, et al, Complete chemical synthesis, assembly, an d cloning of a Mycoplasma genitalium genome. Science, 2008, 319: l215-1220.

[20] Pennisi E. Synthetic genome brings new life to bacterium. Science, 2010, 328:958-959.

[21] Matosevic S, Paegel B M. Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line. Journal of the American Chemical Society, 2011, 133 (9):2798-2800.

[22] Dymond J S, Richardson S M, Coombes C E, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design, Nature, 2011,477:471-476.

[23] Ro D K, Paradise E M, Ouelet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440: 940-943.

[24] GEN. The Status of U.S. and European Government Funding for Synthetic Biology. 2010. . http://www.genengnews.com/gen-news-highlights/the-status-of-u-s-and-european-government-funding-for-synthetic-biology/81243501/.

[25] Liu B, Chen F, Deng Y. Synthetic biology research and its applications in biofuels R&D. 2010 Industrial Biotechnology Development Report, Science Press, 2010, 93-102.

[26] Berthet S, Demont-Caulet N, Pollet B, et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011, 23 (3): 1124-1137.

[27] Lipp E. Synthetic biology finds a niche in fuel alternatives. Genetic Engineering and Biotechnology News, 2008, 28(20).

[28] McKenna P. Biofuel corn makes cow bug enzyme to digest itself. newscientist environment. 2009. . http://www.newscientis.com/article/dn13619.

[29] Nishiwaki A, Mizuguti A, Kuwabara S, et al. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. American Journal of Botany, 2010, 98 (1): 154-159.

[30] Heinzelmana P, Snowa C D, Wua I, et al. A family of thermostable fungal cellulases created by structure-guided recombination. PNAS, 2009, 106 (14): 5610-5615.

[31] Fox R J, Davis C, Mundorff E C, et al. Improving catalytic function by ProSAR-driven enzyme evolution. Nature Biotechnology, 2007, 25: 338-344.

[32] RWE. RWE Power, BRAIN join forces in white biotech: co-operation on CO2 as raw material for new products. 2010. .http://www.yourindustrynews.com/rwe+power,+brain+join+forces+in+white+biotech:+co-operation+on+co2+as+raw+material+for+new+products_44069.html.

[33] Simon C, Daniel R. Metagenomic Analyses: Past and Future Trends, Applied and Environmental Microbiology, 2011, 77(4): 1153-1161.

[34] Warnecke F, Luginbuhl P, Ivanova N, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 2007, 450(7169): 560-565.

[35] Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 2011, 331(6016): 463-467.

[36] Zhang Y, Li Y, Ma Y. Microbial cell factories and biorefinery. Progress in Chemistry, 2007, 19 (8): 1076-1083.

[37] Steen E J., Kang Y S, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010,463, 559-562.

[38] Bond-Watts B B, Bellerose R J , Chang M C Y . Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology. 2011, (7):222-227.

[39] Tsai S L, Oh J, Singh S, et al. Functional Assembly of Minicellulosomes on the Saccharomyces cerevisiae Cell Surface for Cellulose Hydrolysis and Ethanol Production. Applied and Environmental Microbiology, 2009, 75(19):6087-6093.

[40] Gaidos S.2009. Team spirit. Science News, 175(2):20.

[41] Sheehan J. Engineering direct conversion of CO2 to biofuel. Nature Biotechnology, 2009, 27: 1128 - 1129.

[42] Prochnik S E, Umen J, Nedelcu A M, et al. Genomic analysis of organismal complexity in the multicellular green alga volvox carteri. Science, 2010, 329 (5988): 223-226.

[43] Gibson L. Q microbe ethanol production to begin this year. Biofuel Magazine, 2009,(5).

[44] Zhang K, Sawaya M R, Eisenberg D S, et al. Expanding metabolism for biosynthesis of nonnatural alcohols. PNAS, 2008, 105 (52): 20653-20658.

[45] Atsumi S, Hanai T, Liao J C. Non‐Fermentative Pathways for Synthesis of Branched-Chain Higher Alcoholsas Biofuels, Nature, 2008,451, 86-89.

[46] Joule Unlimited, INC. methods and compositions for the recombinant biosynthesis of n-Alkanes. US Patent, 20110117618-A1, 2011-5-19 .

[47] Schirmer A, Rude M A, Li X, et al. Microbial Biosynthesis of Alkanes. Science, 2010, 329 (5991): 559-562.

[48] Gevo Whitepaper, Isobutanol- a renewable solution for the transportation fuels value chain, 2011, .http://www.gevo.com/wp-content/uploads/2011/05/GEVO-wp-iso-ftf.pdf.

[49] Peralta-Yahya P, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel. Nature Communications, 2011, (2), 483.

[50] Gonzalez R, Murarka L A, Dharmadil Y. A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metabolic Engineering, 2008,10(5): 234-245.

[51] BCC Research. Synthetic Biology: Emerging Global Markets, 2009,6.

[52] Global Industry Analysts, Synthetic Biology: A Global Market Report, .http://www.strategyr.com/Synthetic_Biology_Market_Report.asp,

[53] Norvig P, Relman D A, Goldstein D B, et al. 2010. 2020Visions. Nature, 2010, 463(7277):26-32.

[54] Kwok R, Five hard truths for synthetic biology, 2010, 463: 288-290

[55] Singh R. Facts, growth, and opportunities in industrial biotechnology. Organic Process Research & Development 2011, 15(1):175-179.

[56] OECD, Future prospects for industrial biotechnology, .http://www.oecd-ilibrary.org/science-and-technology/future-prospects-for-industrial-biotechnology_9789264126633-en.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[6] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[7] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[8] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[9] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[10] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[11] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[12] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[13] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[14] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[15] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.