Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (3): 68-76    DOI: DOI:10.13523/j.cb.20160310
技术与方法     
电子嗅在线反馈控制毕赤酵母糖化酶发酵过程中甲醇浓度新方法的应用
施慧琳1, 孙靖淳1, 张荣凯1, 高大启1, 王泽建1, 郭美锦1, 周礼勤2, 庄英萍1
1. 华东理工大学生物反应器工程国家重点实验室 国家生化工程技术研究中心 上海生物制造产业技术研究院 上海 200237;
2. 广西科学院生物研究所 南宁 530007
Application of the Electronic Nose on the Online Feedback Control of Methanol Concentration during Glucoamylase Fermentation Optimization by Pichia pastoris
SHI Hui-lin1, SUN Jing-chun1, ZHANG Rong-kai1, GAO Da-qi1, WANG Ze-jian1, GUO Mei-jin1, ZHOU Li-qin2, ZHUANG Ying-ping1
1. State Key Laboratory of Bioreactor Engineering, National Engineering Research Center for Biotechnology, East China University of Science and Technology, Shanghai 200237, China;
2. Biology Institute, Guang Xi Academy of Sciences, Nanning 530007, China
 全文: PDF(1496 KB)   HTML
摘要:

探索了电子嗅传感仪直接通过发酵尾气进行发酵液中甲醇浓度在线检测的方法,建立了毕赤酵母表达糖化酶过程中甲醇浓度的自动化反馈补料控制模型,可准确实现发酵过程中甲醇浓度的精确控制;研究表明,当利用电子嗅将培养液中甲醇浓度稳定控制在(890±35)ppm水平下,发酵诱导培养到128h时目的蛋白糖化酶酶活达到了8 153U/ml,与甲醇浓度控制在(350±26)ppm时的发酵水平相比提升了48.8%。该方法具有无需前处理、与发酵液非接触、快速和准确性的优点,为提升工程酵母在工业发酵培养过程工艺的优化控制具有重要的指导作用。

关键词: 在线监测电子嗅甲醇毕赤酵母糖化酶    
Abstract:

A novel method for direct determining the broth methanol concentration online from the fermentation exhausted gas with electronic nose sensor, established an auto-feedback model for methanol concentration control during glucoamylase fermentation by genetic Pichia pastoris were investigated, the model could be used for precise control in the fermentation process. Methanol concentration controlling strategies through electronic nose showed that when the broth methanol concentration in stability controlled at (890±35)ppm, the highest glucoamylase activity reached 8 153U/ml at 128h of fermentation, which was 48.8% higher than that with the methanol concentration controlled at (350±26)ppm. Online methanol detection and feedback control models needn't pre-treatment and contact with the broth, has the rapid and accuracy advantages. It will be approved as an effective and important role on the online methanol concentration analysis and feedback control on industrial enzyme or aim protein fermentation with genetic Pichia pastoris.

Key words: Electronic nose    Online determination    Methanol    Glucoamylase    Pichia pastoris
收稿日期: 2015-10-26 出版日期: 2016-01-26
ZTFLH:  Q814.3  
基金资助:

国家"863"计划资助项目(2015AA021005)

通讯作者: 庄英萍     E-mail: ypzhaung@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
施慧琳
孙靖淳
张荣凯
高大启
王泽建
周礼勤
庄英萍

引用本文:

施慧琳, 孙靖淳, 张荣凯, 高大启, 王泽建, 郭美锦, 周礼勤, 庄英萍. 电子嗅在线反馈控制毕赤酵母糖化酶发酵过程中甲醇浓度新方法的应用[J]. 中国生物工程杂志, 2016, 36(3): 68-76.

SHI Hui-lin, SUN Jing-chun, ZHANG Rong-kai, GAO Da-qi, WANG Ze-jian, GUO Mei-jin, ZHOU Li-qin, ZHUANG Ying-ping. Application of the Electronic Nose on the Online Feedback Control of Methanol Concentration during Glucoamylase Fermentation Optimization by Pichia pastoris. China Biotechnology, 2016, 36(3): 68-76.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/DOI:10.13523/j.cb.20160310        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I3/68

[1] Vanz A L, Lunsdorf H, Adnan A, et al. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes. Microb Cell Fact, 2012, 11: 103.
[2] Sinha J, Plantz B A, Zhang W,et al. Improved production of recombinant ovine interferon-tau by mut(+) strain of Pichia pastoris using an optimized methanol feed profile. Biotechnol Prog, 2003, 19(3): 794-802.
[3] Trinh L B, Phue J N, Shiloach J. Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris. Biotechnol Bioeng, 2003, 82(4): 438-444.
[4] Schroer K, Luef K P, Stefan F, et al. Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation. Metab Eng, 2010, 12(1): 8-17.
[5] Zhou X S, Fan W M, Zhang Y X. Fermentation behaviors of recombinant Pichia pastoris under inhibited methanol concentration. Sheng Wu Gong Cheng Xue Bao, 2003, 19(5): 618-622.
[6] Jorda J, Suarez C, Carnicer M, et al. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary (1)(3)C flux analysis. BMC Syst Biol, 2013, 7: 17.
[7] Galbraith J C, Smith J E. Sporulation of Aspergillus niger in submerged liquid culture. Journal of General Microbiology, 1969, 59(1): 31-45.
[8] Benassi V M, Pasin T M, Facchini F D, et al. A novel glucoamylase activated by manganese and calcium produced in submerged fermentation by Aspergillus phoenicis. J Basic Microbiol, 2014, 54(5): 333-339.
[9] 赵玉萍, 张灏. 溶菌酶测定方法的改进. 食品科学, 2002, 23(3): 116-119. Zhao Y P, Zhang H. Improvement of lysozyme determination method. Food Science, 2002, 23(3): 116-119.
[10] Fujioka K, Tomizawa Y, Shimizu N, et al. Improving the performance of an electronic nose by wine aroma training to distinguish between drip coffee and canned coffee. Sensors (Basel), 2015, 15(1): 1354-1364.
[11] Ko W, Jung N, Lee M, et al. Electronic nose based on multipatterns of ZnO nanorods on a quartz resonator with remote electrodes. ACS Nano, 2013, 7(8): 6685-6690.
[12] Khatri N K, Hoffmann F. Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris. Biotechnol Bioeng, 2006, 93(5): 871-879.
[13] Lim H K, Choi S J, Kim K Y, et al. Dissolved-oxygen-stat controlling two variables for methanol induction of r-Guamerin in Pichia pastoris and its application to repeated fed-batch. Appl Microbiol Biotechnol, 2003, 62(4): 342-348.
[14] Sola A, Paula J, Hannu M, et al. Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology, 2007, 153(Pt 1): 281-290.

[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[5] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[6] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[7] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[8] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[9] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[10] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[11] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[12] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[13] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[14] 黄鹏,杜望春,施尉珺,饶玉良,孙庆文,张宁. 人源类溶菌酶蛋白6的功能研究及生理特性分析 *[J]. 中国生物工程杂志, 2018, 38(3): 1-8.
[15] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.