Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (4): 92-97    DOI: 10.13523/j.cb.20150414
综述     
合成生物学在链霉菌次级代谢产物研发中的应用
李晓梅, 林春燕, 逄爱萍, 李晓波, 赵广荣
天津大学化工学院制药工程系, 系统生物工程教育部重点实验室 天津化学化工协同创新中心合成生物学平台 天津 300072
Application of Synthetic Biology in Research and Development of the Secondary Metabolites from Streptomyces
LI Xiao-mei, LIN Chun-yan, PANG Ai-ping, LI Xiao-bo, ZHAO Guang-rong
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University; Key Laboratory of Systems Bioengineering, Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 全文: PDF(976 KB)   HTML
摘要:

链霉菌是革兰氏阳性丝状细菌,其次级代谢产物具有抗感染、抗虫、抗肿瘤、免疫调节等生理活性,在医药、食品和农业领域具有重要应用价值。链霉菌的遗传操作技术是发现和改良新次级代谢产物的基础,近年来合成生物学的兴起为链霉菌的研发提供了全新的视角。综述了合成生物学在链霉菌次级产物生物合成基因簇克隆与组装、底盘细胞设计与改造、调节两者适配性方面的应用进展。

关键词: 合成生物学链霉菌次级代谢产物生物合成基因簇克隆与组装最小化基因组底盘细胞    
Abstract:

Streptomyces, a kind of Gram-positive bacteria, can produce lots of secondary metabolites which are widely used in the pharmaceutical industry, food processing and agriculture production. Genetic manipulation for Streptomyces is the foundation for the discovery and development of new secondary metabolites. The emergence of synthetic biology opens a new window for researches in Streptomyces and achievements on cloning and assembly of the biosynthetic gene cluster, the chassis cell design and the fitness were reviewed.

Key words: Synthetic biology    Streptomyces    Secondary metabolites    Biosynthetic gene cluster    Cloning and assembly    Minimized genome    Chassis cell
收稿日期: 2015-01-04 出版日期: 2015-04-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金资助项目(31370092)

通讯作者: 赵广荣     E-mail: grzhao@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李晓梅, 林春燕, 逄爱萍, 李晓波, 赵广荣. 合成生物学在链霉菌次级代谢产物研发中的应用[J]. 中国生物工程杂志, 2015, 35(4): 92-97.

LI Xiao-mei, LIN Chun-yan, PANG Ai-ping, LI Xiao-bo, ZHAO Guang-rong. Application of Synthetic Biology in Research and Development of the Secondary Metabolites from Streptomyces. China Biotechnology, 2015, 35(4): 92-97.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150414        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I4/92


[1] Singh V. Recent advancements in synthetic biology: Current status and challenges. Gene, 2014, 535 (1): 1-11.

[2] 张春霆.合成生物学研究的进展.中国科学基金, 2009, 23 (2): 65-69. Zhang C T. Advances in synthetic biology. Bulletin of National Natural Science Foundation of China, 2009, 23 (2): 65-69.

[3] Fu J, Bian X Y, Hu S B, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nature Biotechnology, 2012, 30 (5): 440-448.

[4] Su C, Zhao X Q, Wang H N, et al. Seamless stitching of biosynthetic gene cluster containing type I polyketide synthases using Red/ET mediated recombination for construction of stably co-existing plasmids. Gene, 2014, 554 (2): 233-240.

[5] Shao Z Y, Zhao H M. DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters. Methods in Enzymology, 2012, 517: 203-224.

[6] Shao Z Y, Luo Y Z, Zhao H M. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Molecular BioSystems, 2011, 7 (4): 1056-1059.

[7] Luo Y, Huang H, Liang J, et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nature Communications, 2013, 4 (2894): 1-15.

[8] Yamanaka K, Reynolds K A, Kersten R D, et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proceedings of the National Academy of Sciences (USA), 2014, 111 (5): 1957-1962.

[9] Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proceedings of the National Academy of Sciences, 2010, 107 (6): 2646-2651.

[10] Komatsu M, Komatsu K, Koiwai H, et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. American Chemical Society Synthetic Biology, 2013, 2 (7): 384-396.

[11] Ikeda H, Kazuo S Y, Omura S. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. Journal of Industrial Microbiology Biotechnology, 2014, 41 (2): 233-250.

[12] Gomez-Escribano J P, Bibb M J. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microbial Biotechnology, 2011, 4 (2): 207-215.

[13] Zhou M, Jing X Y, Xie P F, et al. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. Federation of European Microbiological Societies Microbiology Letters, 2012, 333 (2): 169-179.

[14] Dange V, Westrich L, Smith M C, et al. Use of an inducible promoter for antibiotic production in a heterologous host. Applied Microbiology and Biotechnology, 2010, 87 (1): 261-269.

[15] Liu H B, Jiang H, Haltli Bradley, et al. Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-Streptomyces artificial chromosome vector, pSBAC. Journal of Natural Products, 2009, 72 (3): 389-395.

[16] Du D, Zhu Y, Wei J, et al. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Applied Microbiology and Biotechnology, 2013, 97 (14): 6383-6396.

[17] Wang W, Li X, Wang J, et al. An engineered strong promoter for streptomycetes. Applied and Environmental Microbiology, 2013, 79 (14): 4484-4492.

[18] Siegl T, Tokovenko B, Myronovskyi M, et al. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metabolic Engineering, 2013, 19: 98-106.

[19] Zhao X Q, Gust B, Heide L. S-adenosylmethionine (SAM) and antibiotic biosynthesis: effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Archives of Microbiology, 2010, 192 (4): 289-297.

[20] Zhao X J, Wang Q X, Guo W Q, et al. Overexpression of metK shows different effects on avermectin production in various Streptomyces avermitilis strains. World Journal of Microbiology and Biotechnology, 2013, 29 (10): 1869-1875.

[21] Kotowska M, Pawlik K. Roles of type II thioesterases and their application for secondary metabolite yield improvement. Applied Microbiology and Biotechnology, 2014, 98 (18): 7735-7746.

[22] Li L, Wu J, Deng Z X, et al. Streptomyces lividans blasticidin S deaminase and its application in engineering a blasticidin S producing strain for ease of genetic manipulation. Applied and Environmental Microbiology, 2013, 79 (7): 2349-2357.

[23] Isaacs F J, Carr P A, Wang H H, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 2011, 333 (6040): 348-353.

[24] Mali P, Esvelt K M, Church G M. Cas 9 as a versatile tool for engineering biology. Nature Methods, 2013, 10 (10): 957-963.

[25] Annaluru N, Muller H, Mitchell L A, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344 (6179): 55-58.

[26] Xu P, Li L, Zhang F, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences, 2014, 111 (31): 11299-11304.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 冯宝琪,冯娇,张苗,刘洋,曹睿,尹涵之,齐凤仙,李子龙,尹守亮. 利用Tn5型转座突变系统筛选高产阿维菌素菌株*[J]. 中国生物工程杂志, 2021, 41(7): 32-41.
[5] 王珊,薛正莲,孙俊峰,王芳,周健,刘艳,王洲. 盐增强培养对弗氏链霉菌产新霉素的影响[J]. 中国生物工程杂志, 2021, 41(7): 22-31.
[6] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[7] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[8] 王优蓓,郭思妤,常碧博,叶蕊芳,花强. 螺旋链霉菌遗传操作系统-接合转移体系的建立[J]. 中国生物工程杂志, 2021, 41(2/3): 45-52.
[9] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[10] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[11] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[12] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[13] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[14] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[15] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.