Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (01): 73-79    
综述     
重组腺相关病毒载体临床实验研究
王启钊1,2,吕颖慧1,2,肖卫东2,3,刁勇1,2,许瑞安1,2**
1. 华侨大学分子药物教育部工程研究中心 泉州 362021
2.华侨大学分子药物学研究所 泉州 362021
3.宾州大学医学院 宾夕法尼亚 19104
The Clinical Researches of Recombinant Adeno-associated Vector
WANG Qi-zhao1,2,LV Ying-hui1,2,XIAO Wei-dong2,3,DIAO Yong1,2,XU Rui-an1,2
1.Engineering Research Center of Molecular Medicine, Ministry of Education & Institute of Molecular Medicine, Huaqiao University,Quanzhou 362021,China
2.Department of Pediatrics, University of Pennsylvania, Philadelphia 19104,PA
 全文: PDF(529 KB)   HTML
摘要:

重组腺相关病毒载体 (rAAV)基因药物已经开展六十余项(67)临床研究,其安全、高效、稳定、表达持久等特点越来越受到业界的重视,最近的临床试验发现其在治疗先天性黑内障临床研究中呈现出显著疗效更是极大地振奋了人们的信心。临床研究案例的增加使人们对rAAV基因药物有了更为全面、深入的认识。与此同时,也对基因药物提出了更多挑战与要求,尤其是免疫原性和安全性等方面。

关键词: 基因治疗腺相关病毒载体临床试验先天性黑内障microRNA    
Abstract:

Numerous clinical trials (67) are using adeno-associated vectors (rAAV) as a gene delivery system so far. It becomes more and more alluring by its safety, efficiency, stability and long expression profiles. Recently, exciting outcomes have been obtained by rAAV clinical application in a retinal degeneration disease, Leber’s congenital amaurosis. Clinical trails provide better information for us to understand about the rAAV based gene drugs and bring more challenges as well, immunogenicity and drug safety, etc, in particular.

Key words: Gene therapy;Adeno-associated vector;Clinical trial    Retinal degeneration disease;microRNA
收稿日期: 2009-06-12 出版日期: 2010-01-27
基金资助:

国家“863”计划(2008AA02Z135)、国家重大新药创制专项(2009ZX09103643)、华侨大学校资金(06Y0045;09BS517)资助项目

通讯作者: 许瑞安     E-mail: ruianxu@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王启钊
吕颖慧
肖卫东
刁勇
许瑞安

引用本文:

王启钊 吕颖慧 肖卫东 刁勇 许瑞安. 重组腺相关病毒载体临床实验研究[J]. 中国生物工程杂志, 2010, 30(01): 73-79.

WANG Qi-Zhao, LV Ying-Hui, XIAO Wei-Dong, DIAO Yong, HU Rui-An. The Clinical Researches of Recombinant Adeno-associated Vector. China Biotechnology, 2010, 30(01): 73-79.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I01/73

[1] 许瑞安, 陈凌,肖卫东. 分子基因药物学. 北京:北京大学出版社&北京大学医学出版社, 2009, 240. Xu R A, Chen L, Xiao W. Molecular Gene Medicine. Beijing:Peking University Press and Peking University Medical Press, 2009, 240. 
[2] Xu R A, Sun X, Tse L Y, et al. Longterm expression of angiostatin and suppression of liver metastatic cancer. Hepatology, 2003, 37(6):14511461. 
[3] Xu R A, Harrison P M, Chen M, et al. Cytoglobin protects against damageinduced liver fibrosis. Mol Ther, 2006, 13(6):10931100. 
[4] During M J, Xu R A, Young D, et al. Peroral gene therapy of lactose in tolerance using an adenoassociated virus vector. Nat Med, 1998, 4: 11311136. 
[5] During M J, Symes C W, Lawlor P A, et al. An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science, 2000, 287(5457): 14531460. 
[6] Maguire A M, Simonelli F, Pierce E A, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis.N Engl J Med, 2008, 358(21):22402248. 
[7] Bainbridge J W, Smith A J, Barker S S, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med, 2008, 358(21):22312239. 
[8] Hauswirth W W, Aleman T S, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adenoassociated virus gene vector: shortterm results of a phase I trial. Hum Gene Ther, 2008, 19(10): 979990. 
[9] Mueller C, Flotte T R.Clinical gene therapy using recombinant adenoassociated virus vectors. Gene Ther, 2008, 15, 858863. 
[10] Jacobson S G, Acland G M, Aguirre G D, et al. Safety of recombinant adenoassociated virus type 2RPE65 vector delivered by ocular subretinal injection. Mol Ther, 2006, 13:10741084. 
[11] Le Meur G, Stieger K, Smith A J, et al. Restoration of vision in RPE65de?cient Briard dogs using an AAV serotype 4 vector that speci?cally targets the retinal pigmented epithelium. Gene Ther,2007,14:292303. 
[12] Roman A J, Boye S L, Aleman T S, et al. Electroretinographic analyses of Rpe65mutant rd12 mice: developing an in vivo bioassay for human gene therapy trials of Leber congenital amaurosis. Mol Vis, 2007, 13:17011710. 
[13] Cideciyan A V, Aleman T S, Boye S L, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA, 2008, 105:1511215117. 
[14] Manno C S, Chew A J, Hutchison S, et al. AAVmediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood, 2003, 101: 29632972. 
[15] Manno C S, Pierce G F, Arruda V R, et al. Successful transduction of liver in hemophilia by AAVFactor IX and limitations imposed by the host immune response. Nat Med, 2006, 12: 342347. 
[16] Zaiss A K, Muruve D A. Immunity to adenoassociated virus vectors in animals and humans: a continued challenge. Gene Ther, 2008, 15:808816. 
[17] Xiao W, Narendra C, Truneh A, et al. Humoral immunity to adenoassociated virus type 2 vectors following administration to murine and nonhuman primate muscle. J Virol, 2000, 74:24202425. 
[18] Xiao W, Chirmule N, Schnell M A, et al. Route of administration determines induction of Tcellindependent humoral responses to adenoassociated virus vectors. Mol Ther, 2000,1(4): 323329. 
[19] Daya S, Berns K I. Gene therapy using adenoassociated virus vectors. Clin Microbiol Rev, 2008, 21(4):583593. 
[20] Zabner J, Seiler M, Walters R, et al. Adenoassociated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol, 2000, 74(8): 38523858. 
[21] Gao G, Vandenberghe L H, Alvira M R, et al. Clades of adenoassociated viruses are widely disseminated in human tissues. J Virol, 2004, 78(12):63816388. 
[22] Halbert C L, Allen J M, Miller A D. Adenoassociated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol, 2001, 75(14):66156624. 
[23] Limberis M P, Wilson J M. Adenoassociated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proc Natl Acad Sci USA, 2006, 103(35):1299312998. 
[24] Mori S, Takeuchi T, Enomoto Y, et al. Tissue distribution of cynomolgus adenoassociated viruses AAV10, AAV11, and AAVcy.7 in naturally infected monkeys. Arch Virol, 2008, 153(2): 375380. 
[25] Schmidt M, Voutetakis A, Afione S, et al. Adenoassociated virus type 12 (AAV12): a novel AAV serotype with sialic acid and heparan sulfate proteoglycanindependent transduction activity. J. Virol, 2008, 82:13991406. 
[26] Xu R A, Janson C G, Mastakov M, et al. Quantitative comparison of expression with adenoassociated virus (AAV2) brainspecific gene cassettes. Gene Ther, 2001, 8:13231332. 
[27] Wang Q Z, Lv Y H, Xu R A. Dosereponse and control of adenoassociated viral vectors based prechilical and clinical gene therapy. Chinese Journal Clinical Pharmacology and Therapeutics, 2008, 13(10):11821194. 
[28] Janson C, McPhee S, Bilaniuk L, et al. Clinical protocol. Gene therapy of Canavan disease: AAV2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther, 2002, 13:13911412v 
[29] Lu H, Qu G, Xu R, et al. Systemic elimination of de novo capsid protein synthesis from replication competent AAV contamination. Mol Ther, 2009, (in press). 
[30] Kaplitt M G, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adenoassociated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet, 2007, 23; 369(9579):20972105. 
[31] Apparailly F, Khoury M, Vervoordeldonk M J, et al. Adenoassociated virus pseudotype 5 vector improves gene transfer in arthritic joints. Hum Gene Ther, 2005, 16(4):426434. 
[32] Cao L, Lin E J D, Cahill M C, et al. Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nat Med, 2009, 15:447454. 
[33]吕颖慧, 王启钊,肖卫东等.自身互补型腺相关病毒载体研究进展.生物工程学报, 2009, 25(5): 658664. Lv Y, Wang Q, Xiao W, et al. Chin J Biotech,2009, 25(5): 658664. 
[34] Liu Y L, Wagner K, Robinson N, et al. Optimized production of hightiter recombinant adenoassociated virus in roller bottles. Biotechniques, 2003, 34:184189. 
[35] 刁勇, 许瑞安. 细胞生物技术实验指南.北京:化学化工出版社, 2009: 306337. Diao Y, Xu R A.Protocols of Cellular and Molecular Biotechnology. Beijing:Peking Chemical Industry Press, 2009: 306337. 
[36] Chang J, Nicolas E, Marks D, et al. miR122, a mammalian liverspecific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT1. RNA Biol, 2004, 1(2):106113. 
[37] Wang J, Xie J, Lu H, et al. Existence of transient functional doublestranded DNA intermediates during recombinant AAV transduction. Proc Natl Acad Sci USA, 2007, 104(32): 1310413109. 
[38] Nathwani A C, Gray J T, McIntosh J, et al. Safe and efficient transduction of the liver after peripheral vein infusion of selfcomplementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood, 2007, 109(4): 1414 1421. 
[39] Nathwani A C, Gray J T, McIntosh J, et al. Selfcomplementary adenoassociated virus vectors containing a novel liverspecific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood, 2006, 107(7): 26532661. 
[40] Miller D G, Trobridge G D, Petek L M, et al. Largescale analysis of adenoassociated virus vector integration sites in normal human cells. J Virol, 2005, 79: 1143411442. 
[41] Nakai H, Wu X, Fuess S, et al. Largescale molecular characterization of adenoassociated virus vector integration in mouse liver. J Virol, 2005, 79: 36063614. 
[42] Smith R H. Adenoassociated virus integration: virus versus vector. Gene Ther, 2008, 15:817822. 
[43] Wang Q Z, Lv Y H, Yong D, et al. The design of vectors for RNAi delivery system. Curr Pharm Design, 2008, 14(13):13271340. 
[44] Shu J B, Diao Y, Xiao W, et al. The development trend of chimeric vector of adenovirus/adeno associated viral. J Huaqiao University (Natural Science), 2008, 29(2):172176. 
[45] Corte′s M L, Oehmig A, Saydam O, et al. Targeted integration of functional human ATM cDNA into genome mediated by HSV/AAV hybrid amplicon vector. Mol Ther, 2008, 16: 8188.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[3] 王聪,李秀,牛苗,戴阳光,董哲岳,董小岩,余双庆,杨怡姝. 基于TCID50检测AAV9载体制品感染性滴度的方法[J]. 中国生物工程杂志, 2021, 41(10): 28-32.
[4] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[5] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[6] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[7] 张潘红,李莲莲,张秀美,崔家骏,姜银杰. microRNA对肺癌化疗耐药性影响的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 79-84.
[8] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.
[9] 胡瞬,易有金,胡涛,李福胜. mRNA疫苗的开发及临床研究进展[J]. 中国生物工程杂志, 2019, 39(11): 105-112.
[10] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[11] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[12] 陶嫦立, 黄树林. TCR基因免疫治疗中优化转TCR基因配对的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 87-92.
[13] 罗嘉, 沈林園, 李强, 李学伟, 张顺华, 朱砺. 哺乳动物中作用于非编码RNA的RNA编辑研究进展[J]. 中国生物工程杂志, 2016, 36(11): 76-82.
[14] 刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠. CRISPR-Cas9研究进展及在基因治疗上的应用[J]. 中国生物工程杂志, 2016, 36(10): 72-78.
[15] 朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.