Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (7): 79-84    DOI: 10.13523/j.cb.20190711
综述     
microRNA对肺癌化疗耐药性影响的研究进展 *
张潘红,李莲莲,张秀美,崔家骏,姜银杰()
宜春学院医学院 宜春 336000
Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer
Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG()
Medical College ,Yichun University, Yichun 336000, China
 全文: PDF(421 KB)   HTML
摘要:

化疗耐药性是肺癌治疗的主要挑战之一,导致许多患者的化疗方案无效,并延误了接受合适治疗的时机。因此,研究肺癌化疗耐药性的机制是至关重要的。microRNA (miRNA)作为小分子片段RNA,参与了许多生命过程的调节,并在细胞耐药性产生过程中发挥重要的作用。研究表明,在化疗过程中,miRNAs可以通过降低多种药物耐药性相关基因的表达或促进细胞逃逸凋亡,参与耐药性的调节。然而,对于miRNAs介导的化疗耐药性产生机制的研究还不完善。现有研究表明,特定miRNAs的改变可能与多种癌症的获得性耐药相关,并调节肺癌细胞对化疗药物的敏感性。对miRNAs在肺癌耐药性中的作用及研究进展进行系统阐述。

关键词: 肺癌化疗化疗耐药性microRNA    
Abstract:

Chemotherapy resistance is one of the major challenges in the treatment of lung cancer. Chemotherapy resistance results in therapy failure and missing the opportunity of optimal therapy for some patients. Therefore, it is very important to study the mechanisms of chemotherapy resistance for lung cancer treatments. MicroRNA (miRNAs), small molecules of RNA, are involved in the regulation of various biological processes and play important roles in the therapy resistance of lung cancer. It’s shows that miRNAs regulate drug resistance by reducing the expression of multiple drug resistance-related genes or promoting cell escape apoptosis in cancer cells which treated with chemotherapeutic agents. However, the mechanism of microRNA-mediated drug resistance is not fully understood. Abnormal regulation of specific miRNAs may be associated with chemotherapy resistance to a variety of cancers, there by regulating the sensitivity of cancer cells to drugs in lung cancer. Here will systematically elaborate provide up-to-date understanding in the roles and mechanisms of miRNAs in chemotherapy resistance of lung cancer.

Key words: Lung cancer    Chemotherapy    Therapy resistance    microRNA
收稿日期: 2018-11-20 出版日期: 2019-08-05
ZTFLH:  Q819  
基金资助: * 国家自然科学基金资助项目(31660325)
通讯作者: 姜银杰     E-mail: jiangyinjie8@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张潘红
李莲莲
张秀美
崔家骏
姜银杰

引用本文:

张潘红,李莲莲,张秀美,崔家骏,姜银杰. microRNA对肺癌化疗耐药性影响的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 79-84.

Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer. China Biotechnology, 2019, 39(7): 79-84.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190711        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I7/79

[1] Zheng D W, Dai Y, Wang S , et al. MicroRNA-299-3p promotes the sensibility of lung cancer to doxorubicin through directly targeting ABCE1. Int J Clin Exp Pathol, 2015,8(9):10072-10081.
[2] Rossi G, Mengoli M C, Cavazza A , et al. Large cell carcinoma of the lung: clinically oriented classification integrating immunohistochemistry and molecular biology. Virchows Archiv, 2014,464(1):61-68.
doi: 10.1007/s00428-013-1501-6
[3] Karachaliou N, Pilotto S, Lazzari C , et al. Cellular and molecular biology of small cell lung cancer: an overview. Transl Lung Cancer Res, 2016,5(1):2-15.
[4] Sarkar F H, Li Y, Wang Z , et al. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resistance Updates, 2010,13(3):57-66.
doi: 10.1016/j.drup.2010.02.001
[5] Gomes B C, Rueff J, Rodrigues A S . MicroRNAs and cancer drug resistance. Methods in Molecular Biology, 2016,1395(9):137-162.
doi: 10.1007/978-1-4939-3347-1
[6] Gong J, Jaiswal R, Mathys J M , et al. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treatment Reviews, 2012,38(3):226-234.
doi: 10.1016/j.ctrv.2011.06.005
[7] Gebert Luca F R, MacRae Ian J . Regulation of microRNA function in animals. Nat Rev Mol Cell Biol, 2019,20(1):21-37.
[8] Lu J, Getz G, Miska Eric A , et al. MicroRNA expression profiles classify human cancers. Nature, 2005,435(7043):834-838.
[9] Bracken Cameron P, Scott Hamish S, Goodall Gregory J . A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet, 2016,17(12):719-732.
[10] Bartel David P . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
doi: 10.1016/S0092-8674(04)00045-5
[11] Feng T, Xiao X, Sheng W , et al. Research progress on lung cancer therapy and the mechanism of microRNA in lung cancer and its drug resistance. Medical Recapitulate, 2018,1(24):61-65.
[12] Carrington J C, Ambros V . Role of microRNAs in plant and animal development. Science, 2003,301(5631):336-338.
doi: 10.1126/science.1085242
[13] Kim V N . MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 2005,6(5):376-385.
[14] Lee Y, Kim M, Han J , et al. MicroRNA genes are transcribed by RNA polymerase II. Embo Journal, 2004,23(20):4051-4060.
doi: 10.1038/sj.emboj.7600385
[15] Cai X Z, Hagedorn Curt H, Cullen Bryan R . Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004,10(12):1957-1966.
doi: 10.1261/rna.7135204
[16] Lee Y, Ahn C, Han J , et al. The nuclear RNase III drosha initiates microRNA processing. Nature, 2003,425(6956):415-419.
[17] Han J, Lee Y, Yeom K H , et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 2004,18(24):3016-3027.
[18] Winter J, Jung S, Keller S , et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 2009,11(3):228-234.
[19] Lee Y, Hur I, Park S , et al. The role of PACT in the RNA silencing pathway. Embo Journal, 2006,25(3):522-532.
doi: 10.1038/sj.emboj.7600942
[20] Ambros V . The functions of animal microRNAs. Nature, 2004,431(7006):350-355.
[21] Lytle J R, Yario T A, Steitz J A . Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci USA, 2007,104(23):9667-9672.
doi: 10.1073/pnas.0703820104
[22] Vasudevan S, Tong Y C, Steitz J A . Switching from repression to activation: microRNAs can up-regulate translation. Science, 2007,318(5858):1931-1934.
doi: 10.1126/science.1149460
[23] Calin G A, Sevignani C, Dumitru C D , et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(9):2999-3004.
doi: 10.1073/pnas.0307323101
[24] Lin S, Gregory R I . MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer, 2015,15(6):321-333.
[25] Ebrahimi S, Hashemy S I . MicroRNA-mediated redox regulation modulates therapy resistance in cancer cells: clinical perspectives. Cell Oncol (Dordr), 2019,42(2):131-141.
[26] Takamizawa J, Konishi H, Yanagisawa K , et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 2004,64(11):3753-3756.
doi: 10.1158/0008-5472.CAN-04-0637
[27] Johnson C D, Esquelakerscher A, Stefani G , et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research, 2007,67(16):7713-7722.
doi: 10.1158/0008-5472.CAN-07-1083
[28] Pan X, Wang Z X, Wang R . MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biology & Therapy, 2010,10(12):1224-1232.
[29] Zhang J G, Wang J J, Zhao F , et al. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clinica Chimica Acta, 2010,411(11-12):846-852.
doi: 10.1016/j.cca.2010.02.074
[30] Shi L, Chen J, Yang J . MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Research, 2010,1352(1):255-264.
doi: 10.1016/j.brainres.2010.07.009
[31] Wang P, Guan Q Y, Zhou D M , et al. miR-21 inhibitors modulate biological functions of gastric cancer cells via PTEN/PI3K/mTOR pathway. DNA Cell Biol, 2018,37(1):38-45.
doi: 10.1089/dna.2017.3922
[32] Li X F, Zang A M, Jia Y C , et al. Triptolide reduces proliferation and enhances apoptosis of human non-small cell lung cancer cells through PTEN by targeting miR-21. Mol Med Rep, 2016,13(3):2763-2768.
doi: 10.3892/mmr.2016.4844
[33] Liu Z L, Wang H, Liu J , et al. MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Molecular & Cellular Biochemistry, 2013,372(1-2):35-45.
[34] Jing C W, Cao H X, Qin X B , et al. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett, 2018,15(6):9811-9817.
[35] Blower P E, Chung J H, Verducci J S , et al. MicroRNAs modulate the chemosensitivity of tumor cells. Molecular Cancer Therapeutics, 2008,7(1):1-9.
[36] He L, Thomson J M, Hemann M T , et al. A microRNA polycistron as a potential human oncogene. Nature, 2005,435(7043):828-833.
[37] O’Donnell K A, Wentzel E A, Zeller K I , et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005,435(7043):839-843.
[38] Dews M, Homayouni A, Yu D , et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 2006,38(9):1060-1065.
[39] Bian H B, Pan X, Yang J S , et al. Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549). Journal of Experimental & Clinical Cancer Research, 2011,30(1):20-31.
[40] Mochida Y, Cabral H, Kataoka K , et al. Polymeric micelles for targeted tumor therapy of platinum anticancer drugs. Expert Opin Drug Deliv, 2017,14(12):1-5.
doi: 10.1080/17425247.2017.1262346
[41] Previati M, Lanzoni I, Corbacella E , et al. RNA expression induced by cisplatin in an organ of corti-derived immortalized cell line. Hearing Research, 2004,196(1):8-18.
doi: 10.1016/j.heares.2004.04.009
[42] Lu P, Li Y, Hu D , et al. Recent developments of platinum-based anticancer drugs- detection and analysis in biological samples. Current Organic Chemistry, 2015,19(10):265-266.
[43] Siddik Z H . Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003,22(47):7265-7279.
[44] Tylkowski B, Jastrzab R, Odani A . Developments in platinum anticancer drugse. Physical SciencesReviews, 2016,6(10):143-145.
[45] Zhu W, Xu H, Zhu D X , et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemotherapy & Pharmacology, 2012,69(3):723-731.
[46] Zhu W, Zhu D, Lu S , et al. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Medical Oncology, 2012,29(1):384-391.
doi: 10.1007/s12032-010-9797-4
[47] Zang Y S, Zhong Y F, Fang Z , et al. MiR-155 inhibits the sensitivity of lung cancer cells to cisplatin via negative regulation of Apaf-1 expression. Cancer Gene Therapy, 2012,19(11):773-778.
[48] Huang R S, Zheng Y L, Zhao J , et al. microRNA-381 suppresses the growth and increases cisplatin sensitivity in non-small cell lung cancer cells through inhibition of nuclear factor-κB signaling. Biomed Pharmacother, 2018,98(12):538-544.
doi: 10.1016/j.biopha.2017.12.092
[49] Gelfand V I, Bershadsky A D . Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol, 1991,7(7):93-116.
doi: 10.1146/annurev.cb.07.110191.000521
[50] Rui W, Bing F, Haizhu S , et al. Identification of microRNA profiles in docetaxel-resistant human non-small cell lung carcinoma cells (SPC-A1). Journal of Cellular & Molecular Medicine, 2010,14(1-2):206-214.
[51] Feng B, Wang R, Song H Z , et al. MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer, 2012,118(13):3365-3376.
doi: 10.1002/cncr.26560
[52] Du L, Subauste M C, Desevo C , et al. miR-337-3p and its targets, STAT3, and, RAP1A, modulate taxane sensitivity in non-small cell lung cancers. PLoS One, 2012,7(6):e39167-e39177.
doi: 10.1371/journal.pone.0039167
[53] Díaz-Serrano A, Gella P, Jiménez E , et al. Targeting EGFR in lung cancer: current standards and developments. Drugs, 2018,78(9):893-911.
[54] Chen S, Wang Q, Zhou X M , et al. MicroRNA-27b reverses docetaxel resistance of non-small cell lung carcinoma cells via targeting epithelial growth factor receptor. Mol Med Rep, 2016,14(1):949-954.
doi: 10.3892/mmr.2016.5332
[55] Nasser M W, Datta J, Nuovo G , et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer suppress of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. Journal of Biological Chemistry, 2008,283(48):33394-33405.
doi: 10.1074/jbc.M804788200
[56] Tsukigawa K, Liao L, Nakamura H , et al. Synthesis and therapeutic effect of styrene-maleic acid copolymer-conjugated pirarubicin. Cancer Sci, 2015,106(3):270-278.
doi: 10.1111/cas.2015.106.issue-3
[57] Lee J, Choi K J, Moon S U , et al. Theragnosis-based combined cancer therapy using doxorubicin-conjugated microRNA-221 molecular beaconn. Biomaterials, 2016,74(10):109-118.
doi: 10.1016/j.biomaterials.2015.09.036
[58] Sokol N S, Ambros V . Mesodermally expressed drosophila microRNA-1 is regulated by twist and is required in muscles during larval growth. Genes Dev, 2005,19(19):2343-2354.
doi: 10.1101/gad.1356105
[59] Chen J F, Mandel E M, Thomson J M , et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006,38(2):228-233.
[60] Crawford M, Batte K L . MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun, 2009,388(3):483-489.
doi: 10.1016/j.bbrc.2009.07.143
[1] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.
[2] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[3] 罗嘉, 沈林園, 李强, 李学伟, 张顺华, 朱砺. 哺乳动物中作用于非编码RNA的RNA编辑研究进展[J]. 中国生物工程杂志, 2016, 36(11): 76-82.
[4] 辛婧, 徐银胜, 张芳, 盛望. MicroRNA-124对人宫颈癌的抑制作用及机制研究[J]. 中国生物工程杂志, 2015, 35(10): 13-19.
[5] 易守会, 王东林, 吴志鹃, 杨文影, 赵启成, 陈晓品. MUC1对人结肠癌细胞HCT116生物学行为的影响[J]. 中国生物工程杂志, 2015, 35(1): 15-20.
[6] 满朝来, 唐高霞, 赵丽, 李凤, 甄鑫. DNA甲基化与microRNA[J]. 中国生物工程杂志, 2014, 34(8): 81-87.
[7] 王爱娥, 王英, 李朝霞, 宋云熙, 王东霞, 甘乐文, 马建新, 常艳, 张睢扬, 江小霞. NANOGP8基因在肺癌细胞系中甲基化水平与表达研究[J]. 中国生物工程杂志, 2014, 34(2): 21-25.
[8] 庞敏, 王海龙, 郭民, 郭睿. 人ANKRD49基因真核表达载体的构建及其功能的初步研究和RNA干扰靶点的鉴定[J]. 中国生物工程杂志, 2014, 34(10): 15-21.
[9] 满朝来, 常杨, 唐高霞, 赵丽, 李凤, 甄鑫, 弭晓菊. 基因佐剂的研究进展[J]. 中国生物工程杂志, 2013, 33(7): 112-117.
[10] 李嵚, 何琳, 惠林萍, 赵晨阳, 于涛. 展示KDR胞外区VEGF结合域的T4噬菌体对肺癌细胞增殖侵袭的抑制作用[J]. 中国生物工程杂志, 2013, 33(10): 14-20.
[11] 石磊, 唐莉莉, 马兴元, 王天文, 马飞, 王平. 利用类弹性蛋白可逆相变和内含肽自切割功能高效制备TmSm抗肿瘤蛋白[J]. 中国生物工程杂志, 2013, 33(10): 89-95.
[12] 董园园, 李海燕, 李校堃, 杨树林. 红花microRNAs靶基因的生物信息学预测[J]. 中国生物工程杂志, 2012, 32(10): 33-38.
[13] 唐德平, 毛爱红, 廖世奇, 薛林贵, 张柄林. siRNA脱靶效应类型与规避策略[J]. 中国生物工程杂志, 2012, 32(07): 113-119.
[14] 吕卫东, 杜超超, 王宏, 姜浩武, 劳学军, 宋其芳, 邓宁. 人源性抗bFGF单链抗体表达载体的构建与酵母表达[J]. 中国生物工程杂志, 2012, 32(05): 31-35.
[15] 申健, 张越, 潘秋辉, 孙奋勇. 生物信息学分析及预测miR-17-92的分子调控网络[J]. 中国生物工程杂志, 2012, 32(03): 69-75.