Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (11): 76-82    DOI: 10.13523/j.cb.20161111
综述     
哺乳动物中作用于非编码RNA的RNA编辑研究进展
罗嘉1, 沈林園1, 李强2, 李学伟1, 张顺华1, 朱砺1
1 四川农业大学动物科技学院 成都 611130;
2 四川省畜牧总站 成都 610041
Research Progress of RNA Editing in Mammal Acting on Non-coding RNA
LUO Jia1, SHEN Lin yuan1, LI Qiang2, LI Xue wei1, ZHANG Shun hua1, ZHU Li1
1. College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
2. Sichuan Livestock Master Station, Chengdu 610041, China
 全文: PDF(451 KB)   HTML
摘要:

RNA编辑是RNA转录过程中序列变化而引起的一种基因动态调控机制。腺苷脱氨酶(adenosine deaminases acting on RNA, ADAR)参与RNA编辑,将双链RNA中腺苷残基(A)转化为肌苷(I),接着被转录和拼接成鸟苷(G)。由ADAR催化,作用于RNA的A-I型RNA编辑是人类最常见的转录后修饰。近年来,这种修饰不仅存在于编码RNA中,在非编码RNA(noncoding RNA, ncRNA)中也逐渐被发现,如microRNA(miRNA)、小分子干扰RNA(siRNA)、转运RNA(tRNA)和长链非编码RNA(lncRNA)。这种修饰可能通过对microRNA和mRNA之间结合位点创造或破坏,进而影响ncRNA的生物起源、稳定性和靶向识别功能。目前,对这种生物现象的机制及ADAR底物,尤其是在ncRNA中的特性仍然没有得到充分的认识。主要对哺乳动物中ncRNA上的RNA编辑进行总结,并列举一些阐明其生物学功能的计算方法。

关键词: RNA编辑非编码RNARNA-seqmicroRNA    
Abstract:

RNA editing is a dynamic mechanism for gene regulation caused by the alteration of the primary RNA transcripts sequence. Adenosine deaminase (adenosine deaminases acting on RNA, ADAR) involved in RNA editing, binded double-stranded regions and deaminated adenosine (A) into inosine (I), which in turn is interpreted by the translation and splicing as guanosine (G). A-to-I (adenosine-to-inosine) RNA editing, which is catalyzed by members of the adenosine deaminase acting on RNA (ADARs) family of enzymes, is the most common post-transcriptional modification in humans. In recent years, this modification has been discovered not only in coding RNA but also in noncoding RNA (ncRNA), such as microRNA, small interfering RNA, transfer RNA, and long non-coding RNA. This may have several consequences, such as creation or disruption of microRNA/mRNA binding sites, and thus affect the biogenesis, stability, and target recognition properties of ncRNA. Despite the enormous efforts made so far, the real biological function of this phenomenon, as well as the features of the ADAR substrate, in particular in non-coding RNAs, has still not been fully understood. The current knowledge of RNA editing on ncRNA molecules and provide a few examples of computational approaches to elucidate its biological function were focused orl.

Key words: ncRNA    RNA-seq    microRNA    RNA editing
收稿日期: 2016-04-28 出版日期: 2016-11-25
ZTFLH:  Q522  
基金资助:

国家科技支撑计划项目(2015BAD03B01-11),国家星火计划项目(2015GA810001),教育部长江学者和创新团队发展计划(IRT13083),四川省科技富民强县专项计划项目资助项目

通讯作者: 张顺华,363445986@qq.com;朱砺,zhuli7508@163.com     E-mail: 363445986@qq.com;zhuli7508@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

罗嘉, 沈林園, 李强, 李学伟, 张顺华, 朱砺. 哺乳动物中作用于非编码RNA的RNA编辑研究进展[J]. 中国生物工程杂志, 2016, 36(11): 76-82.

LUO Jia, SHEN Lin yuan, LI Qiang, LI Xue wei, ZHANG Shun hua, ZHU Li. Research Progress of RNA Editing in Mammal Acting on Non-coding RNA. China Biotechnology, 2016, 36(11): 76-82.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161111        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I11/76

[1] Cech T R, Steitz J A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014, 157(1):77-94.
[2] Galeano F, Tomaselli S, Locatelli F, et al. A-to-I RNA editing:The "ADAR" side of human cancer. Seminars in Cell & Developmental Biology, 2012,23(3):244-250.
[3] Tomaselli S, Locatelli F, Gallo A. The RNA editing enzymes ADARs:mechanism of action and human disease. Cell and Tissue Research, 2014, 356(3):527-532.
[4] Kiran A, Baranov P V. DARNED:a DAtabase of RNA editing in humans. Bioinformatics, 2010, 26(14):1772-1776.
[5] Kiran A M, O'Mahony J J, Sanjeev K, et al. Darned in 2013:inclusion of model organisms and linking with Wikipedia. Nucleic Acids Research, 2013, 41(D1):D258-D261.
[6] Ramaswami G, Li J B. RADAR:a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Research, 2013,25(10):996.
[7] Benne R, Van Den Burg J, Brakenhoff JP et al. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell, 1986, 46(6):819-826.
[8] Hensgens L A, Brakenhoff J, De Vries B F, et al. The sequence of the gene for cytochrome c oxidase subunit I, a frameshift containing gene for cytochrome c oxidase subunit Ⅱ and seven unassigned reading frames in Trypanosoma brucei mitochondrial maxi-cirle DNA. Nucleic Acids Research, 1984, 12(19):7327-7344.
[9] Gott J, Visomirski L, Hunter J. Substitutional and insertional RNA editing of the cytochrome c oxidase subunit 1 mRNA of Physarum polycephalum. Journal of Biological Chemistry, 1993, 268(34):25483-25486.
[10] Wang L, Kimble J, Wickens M. Tissue-specific modification of gld-2 mRNA in C. elegans:Likely C-to-U editing. Rna, 2004, 10(9):1444-1448.
[11] Yang Y, Lv J, Gui B et al. A-to-I RNA editing alters less-conserved residues of highly conserved coding regions:implications for dual functions in evolution. RNA, 2008, 14(8):1516-1525.
[12] Petschek J P, Mermer M J, Scheckelhoff M R, et al. RNA editing in drosophila 4f-rnp gene nuclear transcripts by multiple A-to-G conversions. Journal of Molecular Biology, 1996, 259(5):885-890.
[13] Chaw S M, Shih A C C, Wang D, et al. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Molecular Biology and Evolution, 2008, 25(3):603-615.
[14] Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annual Review of Biochemistry, 2010, 79(10):321.
[15] Rueter S M, Dawson T R, Emeson R B. Regulation of alternative splicing by RNA editing. Nature, 1999, 399(6731):75-80.
[16] Jepson J E, Reenan R A. RNA editing in regulating gene expression in the brain. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2008, 1779(8):459-470.
[17] Nishikura K. Editor meets silencer:crosstalk between RNA editing and RNA interference. Nature Reviews Molecular Cell Biology, 2006, 7(12):919-931.
[18] Borchert G M, Gilmore B L, Spengler R M, et al. Adenosine deamination in human transcripts generates novel microRNA binding sites. Human Molecular Genetics, 2009, 18(24):4801-4807.
[19] Su A, Randau L. A-to-I and C-to-U editing within transfer RNAs. Biochemistry (Moscow), 2011, 76(8):932-937.
[20] Kawahara Y, Megraw M, Kreider E, et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Research, 2008, 36(16):5270-5280.
[21] Mitra S A, Mitra A P, Triche T J. A central role for long non-coding RNA in cancer. Frontiers in Genetics, 2012,3(17):70.
[22] Blow M J, Grocock R J, van Dongen S, et al. RNA editing of human microRNAs. Genome Biology, 2006, 7(4):R27.
[23] Yang W, Chendrimada T P, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nature Structural & Molecular biology, 2006, 13(1):13-21.
[24] Kawahara Y, Zinshteyn B, Sethupathy P, et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science, 2007, 315(5815):1137-1140.
[25] Wu D, Lamm A T, Fire A Z. Competition between ADAR and RNAi pathways for an extensive class of RNA targets. Nature Structural & Molecular Biology, 2011, 18(10):1094-1101.
[26] Alon S, Mor E, Vigneault F, et al. Systematic identification of edited microRNAs in the human brain. Genome Research, 2012, 22(8):1533-1540.
[27] Carmi S, Borukhov I, Levanon E Y. Identification of widespread ultra-edited human RNAs. PLoS Genetics, 2011, 7(10):e1002317.
[28] Bazak L, Levanon E Y, Eisenberg E. Genome-wide analysis of Alu editability. Nucleic Acids Research, 2014, 42(11):6876-6884.
[29] Clutterbuck D R, Leroy A, O'Connell M, et al. A bioinformatic screen for novel A-I RNA editing sites reveals recoding editing in BC10. Bioinformatics, 2005, 21(11):2590-2595.
[30] Hoopengardner B, Bhalla T, Staber C, et al. Nervous system targets of RNA editing identified by comparative genomics. Science, 2003, 301(5634):832-836.
[31] Ramaswami G, Zhang R, Piskol R, et al. Identifying RNA editing sites using RNA sequencing data alone. Nature Methods, 2013, 10(2):128-132.
[32] Higuchi M, Maas S, Single F N, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature, 2000, 406(6791):78-81.
[33] Wang Q, Khillan J, Gadue P, et al. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science, 2000, 290(5497):1765-1768.
[34] Maas S, Patt S, Schrey M, et al. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proceedings of the National Academy of Sciences, 2001, 98(25):14687-14692.
[35] Kawahara Y, Ito K, Sun H, et al. Glutamate receptors:RNA editing and death of motor neurons. Nature, 2004, 427(6977):801-801.
[36] Morse D P, Bass B L. Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly (A)+ RNA. Proceedings of the National Academy of Sciences, 1999, 96(11):6048-6053.
[37] Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS biology, 2004, 2(12):e391.
[38] Kim D D, Kim T T, Walsh T, et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Research, 2004, 14(9):1719-1725.
[39] Levanon E Y, Eisenberg E, Yelin R, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature Biotechnology, 2004, 22(8):1001-1005.
[40] Eggington J M, Greene T, Bass B L. Predicting sites of ADAR editing in double-stranded RNA. Nature Communications, 2011, 2(5):319.
[41] Sakurai M, Yano T, Kawabata H, et al. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nature Chemical Biology, 2010, 6(10):733-740.
[42] Sakurai M, Ueda H, Yano T, et al. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Research, 2014, 24(3):522-534.
[43] Li J B, Levanon E Y, Yoon J K, et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science, 2009, 324(5931):1210-1213.
[44] Bazak L, Haviv A, Barak M, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Research, 2014, 24(3):365-376.
[45] Ju Y S, Kim J I, Kim S, et al. Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. Nature Genetics, 2011, 43(8):745-752.
[46] Bahn J H, Lee J H, Li G, et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Research, 2012, 22(1):142-150.
[47] Picardi E, Gallo A, Galeano F, et al. A novel computational strategy to identify A-to-I RNA editing sites by RNA-Seq data:de novo detection in human spinal cord tissue. PloS One, 2012, 7(9):e44184.
[48] Park E, Williams B, Wold B J, et al. RNA editing in the human ENCODE RNA-seq data. Genome Research, 2012, 22(9):1626-1633.
[49] Zhu S, Xiang J-F, Chen T, et al. Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences. BMC Genomics, 2013, 14(1):206.
[50] Solomon O, Bazak L, Levanon E Y, et al. Characterizing of functional human coding RNA editing from evolutionary, structural, and dynamic perspectives. Proteins:Structure, Function, and Bioinformatics, 2014, 82(11):3117-3131.
[51] Porath H T, Carmi S, Levanon E Y. A genome-wide map of hyper-edited RNA reveals numerous new sites. Nature Communications, 2014, 5(10):4726.
[52] de Hoon M J, Taft R J, Hashimoto T, et al. Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Research, 2010, 20(2):257-264.
[53] Alon S, Eisenberg E. Identifying RNA editing sites in miRNAs by deep sequencing. Deep Sequencing Data Analysis, 2013,18(6):159-170.
[54] Peng Z, Cheng Y, Tan BC M, et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nature Biotechnology, 2012, 30(3):253-260.
[55] Picardi E, D'Antonio M, Carrabino D, et al. ExpEdit:a webserver to explore human RNA editing in RNA-Seq experiments. Bioinformatics, 2011, 27(9):1311-1312.
[56] Wahlstedt H, Daniel C, Enster M, et al. Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Research, 2009, 19(6):978-986.
[57] LUCIANO D J, MIRSKY H, VENDETTI N J, et al. RNA editing of a miRNA precursor. Rna, 2004, 10(8):1174-1177.
[58] Kume H, Hino K, Galipon J, et al. A-to-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency. Nucleic Acids Research, 2014,23(6):662.
[59] Yang W, Wang Q, Howell K L, et al. ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. Journal of Biological Chemistry, 2005, 280(5):3946-3953.
[60] Ota H, Sakurai M, Gupta R, et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell, 2013, 153(3):575-589.
[61] Nishikura K, Sakurai M, Ariyoshi K, et al. Antagonistic and stimulative roles of ADAR1 in RNA silencing. RNA Biology, 2013, 10(8):1240-1247.
[62] Rinn J L, Chang H Y. Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 2012,12(10):81.
[63] Mercer T R, Mattick J S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural & Molecular Biology, 2013, 20(3):300-307.
[64] Hellwig S, Bass B L. A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes. Proceedings of the National Academy of Sciences, 2008, 105(35):12897-12902.
[65] Geisler S, Coller J. RNA in unexpected places:long non-coding RNA functions in diverse cellular contexts. Nature Reviews Molecular Cell Biology, 2013, 14(11):699-712.
[66] Torres A G, Piñeyro D, Filonava L, et al. A-to-I editing on tRNAs:Biochemical, biological and evolutionary implications. FEBS Letters, 2014, 588(23):4279-4286.

[1] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[2] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[3] 王柯茹,朱鸿亮. 植物细胞器RNA编辑因子的功能及其作用机制 *[J]. 中国生物工程杂志, 2020, 40(3): 125-131.
[4] 张潘红,李莲莲,张秀美,崔家骏,姜银杰. microRNA对肺癌化疗耐药性影响的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 79-84.
[5] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.
[6] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.
[7] 谭杨,刘胜,罗凤玲,章晓联. 结核分枝杆菌H37Rv刺激巨噬细胞后差异表达lncRNA分析及鉴定 *[J]. 中国生物工程杂志, 2018, 38(5): 1-9.
[8] 范源,罗嘉,甘麦邻,谭娅,张顺华,朱砺. 长链非编码RNA TERRA的研究进展 *[J]. 中国生物工程杂志, 2018, 38(10): 64-73.
[9] 堵晶晶, 谭镇东, 刘辰东, 巫小倩, 张培文, 张顺华, 朱砺. 长链非编码RNA的研究现状[J]. 中国生物工程杂志, 2016, 36(9): 59-74.
[10] 辛婧, 徐银胜, 张芳, 盛望. MicroRNA-124对人宫颈癌的抑制作用及机制研究[J]. 中国生物工程杂志, 2015, 35(10): 13-19.
[11] 满朝来, 唐高霞, 赵丽, 李凤, 甄鑫. DNA甲基化与microRNA[J]. 中国生物工程杂志, 2014, 34(8): 81-87.
[12] 邱家俊, 颜景斌. 基因印记与lncRNA[J]. 中国生物工程杂志, 2014, 34(7): 63-68.
[13] 娄亮亮, 朱运峰. 长链非编码RNA及其与肿瘤关系[J]. 中国生物工程杂志, 2013, 33(7): 82-89.
[14] 满朝来, 常杨, 唐高霞, 赵丽, 李凤, 甄鑫, 弭晓菊. 基因佐剂的研究进展[J]. 中国生物工程杂志, 2013, 33(7): 112-117.
[15] 董园园, 李海燕, 李校堃, 杨树林. 红花microRNAs靶基因的生物信息学预测[J]. 中国生物工程杂志, 2012, 32(10): 33-38.