Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (06): 139-143    DOI: Q782
综述     
多功能信封式纳米载体研究进展
李培,邱飞**,吴龙火,许瑞安
华侨大学分子药物学研究所分子药物教育部工程研究中心 泉州 362021
Developments in Multifunctional Envelope-type Nano Device
LI Pei,QIU Fei,WU Long-huo,XU Rui-an
Institute of Molecular Medicine Huaqiao University & Engineering Research Center of Molecular Medicine, Ministry of Education, Quanzhou 362021,China
 全文: PDF(455 KB)   HTML
摘要:

基因治疗成功的关键技术之一是研制出安全高效的基因转染载体。多功能信封式纳米载体具有易进入细胞、低毒性、低免疫原性、低致瘤性、易制备、转染效率高等优点,是一种有良好应用前景的基因转染载体。综述了近年来多功能信封式纳米载体的研究进展。

关键词: 多功能信封式纳米载体基因治疗转染效率    
Abstract:

One of the major keys for successful gene therapy is to developing safe and high effective gene delivery vectors. Multifunctional envelope-type nano-device(MEND) has shown a promising perspective in gene delivery systems, because of its easy cellular uptake, low-toxic, non-immunogenic, non-oncogenic, easy-to-produce and high transfection activity properties. Recent progress of MEND were reviewed.

Key words: Multifunctional envelope-type nano device    Gene therapy    Transfection activity
收稿日期: 2009-11-26 出版日期: 2010-06-12
基金资助:

国家自然科学基金(30900351)、福建省自然科学基金(2009J05029)资助项目

通讯作者: 邱飞     E-mail: qiufei@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李培
邱飞
吴龙火
许瑞安

引用本文:

李培 邱飞 吴龙火 许瑞安. 多功能信封式纳米载体研究进展[J]. 中国生物工程杂志, 2010, 30(06): 139-143.

LI Pei, QIU Fei, TUN Long-Huo, HU Rui-An. Developments in Multifunctional Envelope-type Nano Device. China Biotechnology, 2010, 30(06): 139-143.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Q782        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I06/139

[1] Williams D A,Baum C. Medicine gene therapynew challenges ahead. Science,2003,302(5644):400401. 
[2] Kaiser J. Gene therapyputting the fingers on gene repair. Science,2005,310(5756):18941896. 
[3] Kostarelos K,Miller A D. Synthetic,selfassembly ABCD nanoparticles; a structural paradigm for viable synthetic nonviral vectors. Chem Soc Rev, 2005,34(11):970994. 
[4] Enrico M,Wim E. Artificial viruses:a nanotechnological approach to gene delivery. Nature Reviews,2006,5(2):115121. 
[5] Kogure K, Akita H,Harashima H. Multifunctional envelopetype nano device for nonviral gene delivery:concept and application of programmed packaging. J Control Release,2007,122(3):246251. 
[6] Kogure K,Akita H,Harashima H. Programmed packaging:a new drug delivery system and its application to gene therapy.In:Knablein J. Modern Biopharmaceuticals.Weinheim:WileyVCH,2008.15211536. 
[7] Kogure K,Akita H,Harashima H. Multifunctional envelopetype nano device (MEND) as a nonviral gene delivery system. Adv Drug Deliv Rev,2008,60(45):559571. 
[8] Kogure K,Moriguchi R,Harashima H. Development of a nonviral multifunctional envelopetype nano device by a novel lipid film hydration method. J Controlled Release,2004,98(2):317323. 
[9] 叶杰胜,张娜,马春红,等. 载鱼精蛋白pDNA复合物固体脂质纳米粒的初步研究.中国药学杂志,2007,42(21):16441688. Ye J S,Zhang N,Ma C H,et al. Chin Pharm J,2007,42(21):16441688. 
[10] 张建华,高秉仁,李斌,等. 纳米基因载体的研究进展.微创医学,2007,2(2):125127. Zhang J H,Gao B R,Li B,et al. Minimally Invasive Medicine,2007,2(2):125127. 
[11] 朱传龙,宁琴. 基因治疗中非病毒载体的研究进展.国外医学遗传学分册,2004,27(4):210213. Zhu C L,Ming Q. Section Genet Foreign Med Sci,2004,27(4):210213. 
[12] Moriguchi R,Kogure K,Harashima H. A multifunctional envelopetype nano device for novel gene delivery of siRNA plasmids. Journal of Pharmaceutics,2005,301(1):277285. 
[13] Khalil I A,Kogure K,Harashima H. High density of octaarginine stimulates macropinocytosis leading to ef?cient intracellular traf?cking for gene expression. J Biol Chem,2006,281(6):35443551. 
[14] Rumiko M,Kentaro K Harashima. Nonlinear pharmacodynamics in a nonviral gene delivery system:Positive nonlinear relationship between dose and transfection efficiency. J Controlled Release,2006,110(3):605609. 
[15] Khalil I A,Kogure K,Futaki S,et al. Octaargininemodified multifunctional envelopetype nanoparticles for gene delivery. Gene Ther,2007,14(8):682689. 
[16] ElSayed A,Masuda T,Harashima H. Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. J Control Release,2009,138(2):160167. 
[17] Mudhakir D,Akita H,Harashima H. A novel IRQ ligandmodified nanocarrier targeted to a unique pathway of caveolar endocytic pathway. J Control Release,2008,125(2):164173. 
[18] Tandia B M,Vandenbranden M,Elouahabi A. Identi?cation of human plasmaproteins that bind to cationic lipid/DNA complex and analysis of their effects on transfection efficiency:implications for intravenous gene transfer. Mol Ther,2003,8(2):264273. 
[19] Hatakeyama H,Akita H,Harashima1 H. Development of a novel systemic gene delivery system for cancer therapy with a tumorspecific cleavable PEGlipid. Gene Therapy,2007,14(1):6877. 
[20] Kakudo T,Chaki S,Harashima H. Transferrinmodified liposomes equipped with a pHsensitive fusogenic peptide:an artificial virallike delivery system. Biochemistry,2004,43(19):56185620. 
[21] Hatakeyama H,Itho E,Harashima H. A pHsensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNAcontaining nanoparticles in vitro and in vivo. J Control Release,2009,139(2):127132. 
[22] Sakurai Y,Hiroto H,Hideyoshi H. Efficient short interference RNA delivery to tumor cells using a combination of octaarginine,GALA and tumorspecific,cleavable polyethylene glycol system. Biol Pharm Bull,2009,32(5):928932. 
[23] Higashi T,Akita H,Harashima H,et al. Novel lipidated sorbitolbased molecular transporters for nonviral gene delivery. J Control Release,2009,136(2):140147. 
[24] Nakamura Y,Kogure K,Futaki S,et al. Octaargininemodified multifunctional envelopetype nano device for siRNA. J Control Release,2007,119(3):360367. 
[25] Moriguchi R,Kogur K,Harashim H,et al. A multifunctional envelopetype nano device for novel gene delivery of siRNA plasmids. Int J Pharm,2005,301(1):277285. 
[26] Yamada Y,Kogure K,Harashima H. Development of efficient packaging method of oligodeoxynucleotides by a condensed nanoparticle in lipid envelope structure. Biol Pharm Bull,2005,28(10):19391942. 
[27] Nakamura Y,Kogure K,Harashima H,et al. Significant and prolonged antisense effect of a multifunctional envelopetype nano device encapsulating antisense oligodeoxynucleotide. J Pharm Pharmacol,2006,58(4):431437. 
[28] Li L Hoffman R M. The feasibility of targeted selective gene therapy of the hair follicle. Nature Medicine,1995,1(7):705706. 
[29] Domashenko A,Gupta S,Cotsarelis G. Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat Biotechnol,2000,18(4):420423.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[3] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[4] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[5] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[6] 陶嫦立, 黄树林. TCR基因免疫治疗中优化转TCR基因配对的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 87-92.
[7] 刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠. CRISPR-Cas9研究进展及在基因治疗上的应用[J]. 中国生物工程杂志, 2016, 36(10): 72-78.
[8] 朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.
[9] 薛金锋, 薛志刚, 陈毅瑶, 李卓, 尹彪, 邬玲仟, 梁德生. 增强型肿瘤特异性启动子介导CDTK治疗肝癌的体内外研究[J]. 中国生物工程杂志, 2015, 35(6): 1-7.
[10] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[11] 张巧娟, 张艳琼, 柳长柏. 类转录激活样因子效应物核酸酶技术的原理及应用[J]. 中国生物工程杂志, 2014, 34(7): 76-80.
[12] 马步云, 何婉婉, 周立, 王毅刚. 癌症靶向基因-病毒ZD55-XAF1抗肝癌移植瘤的生长及其安全性研究[J]. 中国生物工程杂志, 2014, 34(1): 15-20.
[13] 罗婵, 任艳萍, 龚云, 杨素芳, 阮秋燕, 管晓梅, 蒋建荣, 石德顺. 水牛胎儿成纤维细胞电转染条件的优化[J]. 中国生物工程杂志, 2013, 33(9): 59-65.
[14] 凡复, 陈建国, 任宏伟. 帕金森病和阿尔茨海默氏病的基因治疗研究进展[J]. 中国生物工程杂志, 2013, 33(4): 129-135.
[15] 刘思也, 夏海滨. 一种新的由CRISPR/Cas系统介导的基因组靶向修饰技术[J]. 中国生物工程杂志, 2013, 33(10): 117-123.