Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (06): 144-150    DOI: Q555+.4
综述     
环糊精葡萄糖基转移酶的结构特征与催化机理
李兆丰1,2**,顾正彪1,2**,堵国成1,3,吴敬1,3,陈坚1,3
1.江南大学食品科学与技术国家重点实验室 无锡 214122
2.江南大学食品学院 无锡 214122
3.江南大学生物工程学院工业生物技术教育部重点实验室 无锡 214122
Structural Characteristics and Catalytic Mechanisms of Cyclodextrin Glycosyltransferase
LI Zhao-feng1,2,GU Zheng-biao1,2,DU Guo-cheng1,3,WU Jing1,3,CHEN Jian1,3
1.State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
2.School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
3.School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
 全文: PDF(879 KB)   HTML
摘要:

随着环糊精在食品、医药等领域的应用越来越广,生产环糊精所必需的环糊精葡萄糖基转移酶 (CGT酶) 已经成为当今研究的热点。特别是近二十年来,国外对该酶进行了比较深入的研究。首先介绍了CGT酶的功能特性与结构特征。CGT酶是一种多功能型酶,能催化三种转糖基反应(歧化、环化和耦合反应)和水解反应,其中,能将淀粉转化为环糊精的环化反应是特征反应;作为α-淀粉酶家族的成员,CGT酶除了具有与α-淀粉酶相同的A、B、C结构域外,还存在D和E结构域。另外,对CGT酶的催化机理包括底物结合方式、转糖苷反应机理以及环化机理等进行了详细的讨论。

关键词: 环糊精环糊精葡萄糖基转移酶结构特征催化机理环化反应    
Abstract:

With the applications of cyclodextrins expanding in the industries related to food, pharmaceuticals, etc, cyclodextrin glycosyltransferase (CGTase), the essential enzyme for the production of cyclodextrins, has become the focus of scientific research nowadays. Especially in recent twenty years, CGTase has been studied extensively, leading to increasing knowledge of its structure and function. Firstly the function and structural characteristics of CGTase were focused on. CGTase is a multifunctional enzyme. It can catalyze three transglycosylation reactions (disproportionation, cyclization, and coupling), and a hydrolysis reaction. The specific CGTase reaction is the cyclization reaction, which can result in the formation of a cyclodextrin. CGTase is a member of the α-amylase family of glycosyl hydrolases. α-Amylases generally consist of three structural domains, A, B, and C, while CGTases show a similar domain organization with two additional domains, D and E. In addition, substrate binding of CGTase and mechanisms of transglycosylation and cyclization reactions catalyzed by CGTase were discussed in detail. Domain B contributes to substrate binding by providing several amino acid side chains alongside a substrate binding groove on the surface of the CGTase protein. Maltose binding site assists in guiding the linear starch chains into the substrate binding groove containing at least nine subsites. After the glycosidic bond cleavage reaction has taken place between subsites +1 and -1, the non-reducing end of the oligosaccharide at the groove is transferred to the reducing end of the same oligosaccharide chain, leading to cyclic products.

Key words: Cyclodextrin    Cyclodextrin glycosyltransferase    Structural characteristics    Catalytic mechanism    Cyclization reaction
收稿日期: 2010-01-19 出版日期: 2010-06-12
基金资助:

国家“863”计划资助项目(2006AA10Z235)

通讯作者: 李兆丰     E-mail: zhengbiaogu@yahoo.com.cn;zfli@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李兆丰
顾正彪
堵国成
吴敬
陈坚

引用本文:

李兆丰 顾正彪 堵国成 吴敬 陈坚. 环糊精葡萄糖基转移酶的结构特征与催化机理[J]. 中国生物工程杂志, 2010, 30(06): 144-150.

LI Zhao-Feng, GU Zheng-Biao, DU Guo-Cheng, TUN Jing, CHEN Jian. Structural Characteristics and Catalytic Mechanisms of Cyclodextrin Glycosyltransferase. China Biotechnology, 2010, 30(06): 144-150.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Q555+.4        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I06/144

[1] Li Z F, Wang M, Wang F, et al. γCyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol, 2007, 77(2): 245255. 
[2] van de Manakker F, Vermonden T, van Nostrum C F, et al. Cyclodextrinbased polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules, 2009, 10(12): 31573175. 
[3] Tonkova A. Bacterial cyclodextrin glucanotransferase. Enzyme Microb Tech, 1998, 22: 678686. 
[4] Li Z F, Zhang J Y, Sun Q, et al. Mutations of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhance βcyclodextrin specificity. J Agri Food Chem, 2009, 57(18): 83868391. 
[5] Li Z F, Zhang J Y, Wang M, et al. Mutations at subsite3 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhancing αcyclodextrin specificity. Appl Microbiol Biotechnol, 2009, 83(3): 483490. 
[6] Kelly R M, Dijkhuizen L, Leemhuis H. The evolution of cyclodextrin glucanotransferase product specificity. Appl Microbiol Biotechnol, 2009, 84(1): 119133. 
[7] 丁闰蓉, 李兆丰, 李金根, 等. 表面活性剂对大肠杆菌胞外生产α环糊精葡萄糖基转移酶的影响. 中国生物工程杂志, 2009, 29(7): 6166. Ding R R, Li Z F, Li J G, et al. China Biotechnology, 2009, 29(7): 6166. 
[8] 李兆丰. 软化类芽孢杆菌α环糊精葡萄糖基转移酶在大肠杆菌中的表达及其产物特异性分析. 无锡:江南大学, 食品学院, 2009. Li Z F. Expression of αcyclodextrin glycosyltransferase from Paenibacillus macerans in Escherichia coli and analysis of its product specificity. Wuxi: Jiangnan University, School of Food Science and Technology, 2009. 
[9] van der Veen B A, van Alebeek G J, Uitdehaag J C, et al. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. Eur J Biochem, 2000, 267(3): 658665. 
[10] Uitdehaag J C M, Veen B A, Dijkhuizen L, et al. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the αamylase family. Enzyme Microb Tech, 2002, 30:295304. 
[11] Terada Y, Yanase M, Takata H, et al. Cyclodextrins are not the major cyclic α1,4glucans produced by the initial action of cyclodextrin glucanotransferase on amylose. J Biol Chem, 1997, 272(25): 1572915733. 
[12] van der Veen B A, Uitdehaag J C, Dijkstra B W, et al. Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochim Biophys Acta, 2000, 1543(2): 336360. 
[13] Zheng M Y, Endo T, Zimmermann W. Synthesis of largering cyclodextrins by cyclodextrin glucanotransferases from bacterial isolates. J Incl Phenom Macrocycl Chem, 2002, 44:387390. 
[14] Kometani T, Terada Y, Nishimura T, et al. Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties. Biosci Biotechnol Biochem, 1994, 58:19901994. 
[15] Lee Y H, Baek S G, Shin H D, et al. Transglycosylation reaction of cyclodextrin glucanotransferase in the attrition coupled reaction system using raw starch as a donor. Kor J Appl Microbiol Biotechnol, 1993, 21:461467. 
[16] Shimoda K, Sato D, Hamada H. Synthesis of βmaltooligosaccharides of αtocopherol derivatives by xanthomonas campestris and cyclodextrin glucanotransferase and their antiallergic activity. Chem Lett, 2009, 38(3): 930931. 
[17] Qi Q, Zimmermann W. Cyclodextrin glucanotransferase: from gene to applications. Appl Microbiol Biotechnol, 2005, 66(5): 475485. 
[18] Kometani T, Nishimura T, Nakae T, et al. Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species. Biosci Biotechnol Biochem, 1996, 60:645649. 
[19] Bruinenberg PM, Hulst A C, Faber A, et al. A process for surface sizing or coating paper. Eur Patent, P1995000201751,1996. 
[20] Klein C, Schulz G E. Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. J Mol Biol, 1991, 217(4): 737750. 
[21] Janecek S. Parallel β/αbarrels of αamylase, cyclodextrin glycosyltransferase and oligo1,6glucosidase versus the barrel of βamylase: evolutionary distance is a reflection of unrelated sequences. FEBS Lett, 1994, 353(2): 119123. 
[22] Janecek S. New conserved amino acid region of alphaamylases in the third loop of their (β/α)8barrel domains. Biochem J, 1992, 288 ( Pt 3): 10691070. 
[23] Rimphanitchayakit V, Tonozuka T, Sakano Y. Construction of chimeric cyclodextrin glucanotransferases from Bacillus circulans A11 and Paenibacillus macerans IAM1243 and analysis of their product specificity. Carbohydr Res, 2005, 340(14): 22792289. 
[24] Penninga D, van der Veen B A, Knegtel R M, et al. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem, 1996, 271(51): 3277732784. 
[25] Strokopytov B, Knegtel R M, Penninga D, et al. Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 angstrom resolution. Implications for product specificity. Biochemistry, 1996, 35(13): 42414249. 
[26] Bender H. Studies of the mechanism of the cyclisation reaction catalysed by the wildtype and a truncated αcyclodextrin glycosyltransferase from Klebsiella pneumoniae strain M 5 al, and the βcyclodextrin glycosyltransferase from Bacillus circulans strain 8. Carbohydr Res, 1990, 206(2): 257267. 
[27] Wind R D, Uitdehaag J C, Buitelaar R M, et al. Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J Biol Chem, 1998, 273(10): 57715779. 
[28] Lawson C L, van Montfort R, Strokopytov B, et al. Nucleotide sequence and Xray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltosedependent crystal form. J Mol Biol, 1994, 236(2): 590600. 
[29] Uitdehaag J C, Kalk K H, van Der Veen B A, et al. The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a γcyclodextrinCGTase complex at 1.8A resolution. J Biol Chem, 1999, 274(49): 3486834876. 
[30] McCarter J D, Withers S G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol, 1994, 4(6): 885892. 
[31] Strokopytov B, Penninga D, Rozeboom H J, et al. Xray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochemistry, 1995, 34(7): 22342240. 
[32] Qian M, Haser R, Buisson G, et al. The active center of a mammalian αamylase. Structure of the complex of a pancreatic αamylase with a carbohydrate inhibitor refined to 2.2A resolution. Biochemistry, 1994, 33(20): 62846294. 
[33] Brzozowski A M, Davies G J. Structure of the Aspergillus oryzae αamylase complexed with the inhibitor acarbose at 2.0 A resolution. Biochemistry, 1997, 36(36): 1083710845. 
[34] Parsiegla G, Schmidt A K, Schulz G E. Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the γcyclodextrin production. Eur J Biochem, 1998, 255(3): 710717. 
[35] van der Veen B A, Uitdehaag J C, Penninga D, et al. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase αcyclodextrin production. J Mol Biol, 2000, 296(4): 10271038. 
[36] 张佳瑜, 吴丹, 李兆丰, 等. 来源于软化芽孢杆菌的环糊精葡萄糖基转移酶在毕赤酵母和枯草杆菌中的表达. 生物工程学报, 2009, 25(12): 19481954. Zhang J Y, Wu D, Li Z F, et al. Chinese Journal of Biotechnology, 2009, 25(12): 19481954. 
[37] 成成, 李兆丰, 李彬, 等. 利用重组大肠杆菌生产α环糊精葡萄糖基转移酶. 生物加工过程, 2009, 7(3): 5663. Cheng C, Li Z F, Li B, et al. Chinese Journal of Bioprocess Engineering, 2009, 7(3): 5663.
 [38] 胡静, 陈育如, 魏霞, 等. 高产环糊精葡萄糖基转移酶的枯草芽孢杆菌选育、产酶与酶学特性. 食品与生物技术学报, 2008, 27(4): 97102. Hu J, Chen Y R, Wei X, et al. Journal of Food Science and Biotechnology, 2008, 27(4): 97102.

[1] 徐嘉威,贺花,张静,雷初朝,陈宏,黄永震. 转录因子KLF8基因结构及其功能研究进展[J]. 中国生物工程杂志, 2018, 38(4): 90-95.
[2] 郭永华, 陈济琛, 蔡海松, 陈龙军, 林新坚. Geobacillus sp.CHB1环糊精葡萄糖基转移酶淀粉结合位点N623饱和突变对催化效率与产物特异性的影响[J]. 中国生物工程杂志, 2016, 36(11): 30-38.
[3] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.
[4] 余志良, 周宁, 乔华. L-氨基酸氧化酶的研究进展[J]. 中国生物工程杂志, 2012, 32(03): 125-135.
[5] 纪丽萍, 吴丹, 吴敬, 陈坚. 重组大肠杆菌产γ-环糊精葡萄糖基转移酶的摇瓶发酵优化[J]. 中国生物工程杂志, 2011, 31(10): 50-56.
[6] 陈星羽, 辛剑宇, 李建树. 环糊精及其衍生物在多肽/蛋白质类药物非注射给药体系中的应用[J]. 中国生物工程杂志, 2010, 30(12): 111-115.
[7] 程婧 吴丹 陈晟 吴敬 陈坚. 复合与合成培养基对大肠杆菌胞外生产α-环糊精葡萄糖基转移酶的影响[J]. 中国生物工程杂志, 2010, 30(09): 36-42.
[8] 丁闰蓉,吴敬. 表面活性剂对大肠杆菌胞外生产α-环糊精葡萄糖基转移酶的影响[J]. 中国生物工程杂志, 2009, 29(07): 56-61.
[9] 张斌,夏永振,范仲学,祁庆生. 利用高效阴离子色谱快速检测筛选环糊精糖基转移酶产生菌>[J]. 中国生物工程杂志, 2009, 29(05): 95-98.
[10] 杨红艺,钞亚鹏,石家骥,解复红,薛智权,钱世钧. α-环状糊精葡萄糖基转移酶的固定化及其性质研究[J]. 中国生物工程杂志, 2009, 29(01): 34-38.
[11] 王俊英,钞亚鹏,关东明,钱世钧. 一种α-环糊精葡萄糖基转移酶的纯化及性质研究[J]. 中国生物工程杂志, 2008, 28(7): 67-70.
[12] 王跃军,高强,孙谧,郝建华,王海英. 超嗜热羧酸酯酶的性质和应用研究[J]. 中国生物工程杂志, 2008, 28(3): 118-122.
[13] 罗建平, 王军辉, 范远景. 植物异黄酮合酶研究进展[J]. 中国生物工程杂志, 2005, 25(7): 17-20.
[14] 高春光, 双少敏, 赵永祥, 任列香. 两种环糊精对α-淀粉酶活性稳定作用的研究[J]. 中国生物工程杂志, 2003, 23(8): 101-103.
[15] 李洪军, 胡宗利, 魏泓. 防御素(Defensin)研究进展[J]. 中国生物工程杂志, 2001, 21(3): 34-37.