Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (03): 112-118    
综述     
合成气厌氧发酵生产有机酸和醇的研究进展
徐惠娟1,许敬亮1,郭颖1,2,庄新姝1,袁振宏1**
1.中国科学院广州能源研究所 可再生能源与天然气水合物重点实验室 广州 510640
2.中国科学院研究生院 北京 100039
Anaerobic Fermentation of Synthesis Gas for Organic Acids and Alcohols Production
1.Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
2.Graduate School of Chinese Academy of Sciences,Beijing 100039,China
 全文: PDF(874 KB)   HTML
摘要:

合成气来自于煤、石油、生物质和有机废物的气化,其主要成份为CO、H2和CO2。研究发现某些厌氧菌能利用合成气生成乙醇、乙酸、丁醇和丁酸等燃料和化学品。由于生物转化所具有的优势,合成气厌氧发酵被认为是一项极具潜力和竞争力的技术,在生物质及有机废物的利用方面将发挥重要作用。对厌氧发酵合成气生产有机酸和醇的研究进展,包括利用合成气产有机酸和醇的微生物,合成气发酵的代谢途径和关键酶(一氧化碳脱氢酶/乙酰辅酶A合成酶)及用于合成气发酵的反应器等进行了综述,并对该项技术的发展提出了一些建议。

关键词: 厌氧发酵合成气乙醇乙酸    
Abstract:

Gasification of coal, oil, biomass or organic wastes generates synthesis gas, which consists primarily of CO, H2 and CO2. Synthesis gas may be used as substrates by some anaerobic bacteria to produce liquid fuels and chemicals such as ethanol, acetic acid, butanol and butyric acid. Anaerobic fermentation of synthesis gas is considered a promising and competing technology due to its advantages over catalytic techniques, and it's expected that synthesis gas fermentation will play a role in the conversion of biomass and organic wastes. Research progress in production of organic acids and alcohols via synthesis gas fermentation was reviewed, focusing on microorganisms, the metabolic pathway, key enzymes (especially carbon monoxide dehydrogenase /acetyl-CoA synthase) and bioreactors. Suggestions were also given to indicate areas where advances can be made.

Key words: Anaerobic Fermentation    Synthesis Gas    Ethanol    Acetic acid
收稿日期: 2009-11-05 出版日期: 2010-03-25
基金资助:

中国科学院知识创新工程重要方向项目(KGCX2YW335)资助项目

通讯作者: 袁振宏     E-mail: yuanzh@ms.giec.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐惠娟
许敬亮
郭颖
庄新姝
袁振宏

引用本文:

徐惠娟 许敬亮 郭颖 庄新姝 袁振宏. 合成气厌氧发酵生产有机酸和醇的研究进展[J]. 中国生物工程杂志, 2010, 30(03): 112-118.

XU Hui-Juan, HU Jing-Liang, GUO Ying, PENG Xin-Shu, YUAN Zhen-Hong. Anaerobic Fermentation of Synthesis Gas for Organic Acids and Alcohols Production. China Biotechnology, 2010, 30(03): 112-118.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I03/112

[1] Phillips J R, Klasson K T, Clausen E C, et al. Biological production of ethanol from coal synthesis gas. Applied Biochemistry and Biotechnology. 1993, 3940(1): 559571. 
[2] Maschio G, Lucchesi A, Stoppato G. Production of syngas from biomass. Bioresource Technology. 1994, 48(2):119126. 
[3] Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials. Science. 2006, 311: 484489. 
[4] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews. 2006, 106:40444098. 
[5] Van Kasteren J M N. Cogasification of wood and polyethylene with the aim of CO and H2 production. Journal of Material Cycles and Waste Management. 2006, 8:9598. 
[6] Henstra A M, Sipma J, Rinzema A, et al. Microbiology of synthesis gas fermentation for biofuel production. Current Opinion in Biotechnology. 2007, 18:200206. 
[7] Fontaine F E, Peterson W H, McCoy E, et al. A new type of glucose fermentation by Clostridium thermoaceticum. Journal of Bacteriology. 1942, 43(6): 701715. 
[8] Collins M D, Lawson P A, Willems A, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. International Journal of Systematic Bacteriology. 1994, 44:812826. 
[9] Kerby R, Zeikus J G. Growth of Clostridium thermoacetium on H2/CO2 or CO as energy source. Current Microbiology. 1983, 8:2730. 
[10] Wood H G. A study of carbon dioxide fixation by mass determination of the types of C13acetate. The Journal of Biological Chemistry. 1952, 194: 905931. 
[11] Ljungdahl L G, Andreesen J R. Tungsten, a component of active formate dehydrogenase from Clostridium thermoaceticum. FEBS Letters. 1975, 54: 279282. 
[12] Ljungdahl L, Irion E, Wood H G. Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum. Federation Proceedings. 1966, 25: 16421648. 
[13] Drake H L, Hu S I, Wood H G. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. The Journal of Biological Chemistry. 1981, 256: 1113711144. 
[14] Ragsdale S W, Wood H G. Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis. The Journal of Biological Chemistry. 1985, 260: 39703977. 
[15] Ljungdahl L G. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annual Review of Microbiology. 1986, 40: 415450. 
[16] Worden R M, Grethlein A J, Zeikus J G, et al. Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Applied Biochemistry and Biotechnology. 1989, 20/21: 687698 . 
[17] Grethlein A J, Worden R M, Jain M K, et al. Continuous production of mixed alcohols and acids from carbon monoxide. Applied Biochemistry and Biotechnology. 1990, 24/25:875884. 
[18] Grethlein A J, Worden R M, Jain M K, et al. Evidence for production of nbutanol from carbon monoxide by Butyribacterium methylotrophicum. Journal of Fermentation and Bioengineering. 1991, 72(1):5860. 
[19] Tanner R S, Miller L M, Yang D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology groupI. International Journal of Systematic Bacteriology. 1993, 43(2): 232236. 
[20] Barik S, Prieto S, Harrison S B, et al. Biological production of alchohols from coal through indirect liquifcation. Applied Biochemistry and Biotechnology. 1988, 28:363378. 
[21] Gaddy J L, Clausen E C. Clostridium ljungdahlii, an anaerobic ethanol and acetate producing microorganism:U.S., 612221, 1992. 
[22] Klasson K T, Ackerson M D, Clausen E C, et al. Biological conversion of coal and coalderived synthesis gas. Fuel,1993, 72 (12):16731678. 
[23] Klasson K T, Ackerson M D, Clausen E C, et al. Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microbial Technology. 1992, 14: 602608. 
[24] Liou J S C,Balkwill D L,Drake G R,et al.Clostridium carboxidivorans sp. nov., a solventproducing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. . International Journal of Systematic and Evolutionary Microbiology. 2005, (55):20852091. 
[25] Rajagopalan S, Datar R P, Lewis R S. Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass and Bioenergy. 2002, 23: 487493. 
[26] Datar R P, Shenkman R M, Cateni B G, et al. Fermentation of biomassgenerated producer gas to ethanol. Biotechnology and Bioengineering. 2004, 86 (5): 587594. 
[27] Abrini J, Naveau H, Nyns E. Clostridium autoethanogenum sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Archives of Microbiology. 1994, 161:345351. 
[28] Wood H G, Ljungdahl L G. Autotrophic character of acetogenic bacteria. In Variations in Autotrophic Life. Shively J M, Barton L L, Eds. SanDiego, CA: Academic Press. 1991, 201250 . 
[29] Drake H L, G?ssner A S, Daniel S L. Old acetogens, new light. Annals of the New York Academy of Sciences. 2008, 1125: 100128. 
[30] Grethlein A J, Jain M K, 1992. Bioprocessing of coalderived synthesis gas by anaerobic bacteria. Trends in Biotechnology, 10: 418423. 
[31] Diekert G B, Thauer R K. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. Journal of Bacteriology. 1978, 136:597606. 
[32] Ragsdale S W, Clark J E, Ljungdahl L G, et al. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum a nickel, ironsulfur protein. The Journal of Biological Chemistry. 1983, 258:23642369. 
[33] Diekert G, Ritter M. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Letters. 1983, 151:4144. 
[34] Xia J, Sinclair J F, Baldwin T O, et al. Carbon monoxide dehydrogenase from Clostridium thermoaceticum: quaternary structure, stoichiometry of its SDSinduced dissociation, and characterization of the fastermigrating form. Biochemistry. 1996, 35(6):19651971. 
[35] Ragsdale S W. Life with carbon monoxide. Critical Reviews in Biochemistry and Molecular Biology. 2004, 39:165195 . 
[36] Tan X S, Bramlett M R, Lindahl P A. Effect of Zn on acetyl coenzyme a synthase: evidence for a conformational change in the a subunit during catalysis. Journal of the American Chemical Society. 2004, 126(19): 59545955. 
[37] Bramlett M R, Tan X S, Lindahl P A. Inactivation of acetylCoA synthase/carbon monoxide dehydrogenase by copper. Journal of the American Chemical Society. 2003, 125(31): 93169317. 
[38] Maynard E L, Lindahl P A. Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetylCoA synthesis in acetylCoA synthase from Clostridium thermoaceticum. Journal of the American Chemical Society. 1999, 121:92219222. 
[39] Seravalli J, Ragsdale S W. Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry. 2000, 39(6):12741277. 
[40] Bredwell M D, Srivastava P, Worden R M. Reactor design issues for synthesisgas fermentations. Biotechnology Progress. 1999, 15(5): 834844. 
[41] Alonso C, Suidan M T, Sorial G A, et al. Gas treatment in tricklebed biofilters: biomass, how much is enough? . Biotechnology and Bioengineering. 1997, 54: 583594. 
[42] Bredwell M D, Worden R M. Masstransfer properties of microbubbles: Experimental studies. Biotechnology Progress. 1998, 14 (1): 3138. 
[43] Sebba F. Foams and Biliquid Foams Aphrons. Wiley: New York, 1987. 
[44] Kaster J A, Michelsen D L, Velander W H. Increased oxygen transfer in a yeast fermentation using a microbubble dispersion. Applied Biochemistry and Biotechnology. 1990, 24/25:469484. 
[45] Klasson K T, Ackerson M D, Clausen E C, et al. Bioreactors for synthesis gas fermentations. Resources, Conservation and Recycling. 1991, 5: 145165.

[1] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[2] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[3] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[4] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.
[5] 王景胜, 王秋峰, 李勇, 刘燕, 张先楚, 李波, 董青山, 刘钺. Logistic模型在不同还原糖初始浓度乙醇发酵中的应用[J]. 中国生物工程杂志, 2017, 37(10): 81-85.
[6] 郭雪娇, 查健, 姚坤, 王昕, 李炳志, 元英进. 选育耐受复合抑制剂酿酒酵母提高乙醇产量[J]. 中国生物工程杂志, 2016, 36(5): 97-105.
[7] 梁向南, 张鲲, 邹少兰, 王建军, 马媛媛, 洪解放. 鸡尾酒δ整合策略构建表达三类纤维素酶的酿酒酵母工程菌株及初步评价[J]. 中国生物工程杂志, 2016, 36(11): 54-62.
[8] 王浩, 张敬书, 丁健, 罗洪镇, 陈锐, 史仲平. 限制葡萄糖、葡萄糖/乙酸双底物条件下自由控制丙丁梭菌ABE发酵丙酮浓度和丙酮/丁醇比[J]. 中国生物工程杂志, 2016, 36(10): 60-71.
[9] 张许, 丁健, 高鹏, 高敏杰, 贾禄强, 涂庭勇, 史仲平. 基于差分进化算法的酿酒酵母分批补料培养在线自适应控制[J]. 中国生物工程杂志, 2016, 36(1): 68-75.
[10] 申冬玲, 尚淑梅, 李卫娜, 严金平, 伊日布斯. ack基因敲除对Thermoanaerobacterium calidifontis Rx1发酵代谢的影响[J]. 中国生物工程杂志, 2015, 35(7): 37-44.
[11] 孙欢, 贾海洋, 冯旭东, 刘月芹, 李春. 酿酒酵母耐热元器件的筛选[J]. 中国生物工程杂志, 2015, 35(3): 75-83.
[12] 刘伟, 郑璞, 靳新娜. 阻断嗜乙酰乙酸棒杆菌乙酸合成途径对其在缺氧条件下产琥珀酸的影响[J]. 中国生物工程杂志, 2014, 34(9): 48-55.
[13] 李谢昆, 周卫征, 郭颖, 吴浩, 许敬亮, 袁振宏. 微藻生物质制备燃料乙醇关键技术研究进展[J]. 中国生物工程杂志, 2014, 34(5): 92-99.
[14] 高教琪, 韩锡铜, 孔亮, 袁文杰, 王娜, 白凤武. 马克斯克鲁维酵母在工业生物技术中的应用[J]. 中国生物工程杂志, 2014, 34(2): 109-117.
[15] 李云成, 汤岳琴, 木田建次. “组学”技术在燃料乙醇生产用酿酒酵母菌株构建中的应用[J]. 中国生物工程杂志, 2014, 34(2): 118-128.