Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (7): 37-44    DOI: 10.13523/j.cb.20150706
研究报告     
ack基因敲除对Thermoanaerobacterium calidifontis Rx1发酵代谢的影响
申冬玲1, 尚淑梅2, 李卫娜1, 严金平1, 伊日布斯1
1. 昆明理工大学生命科学与技术学院 昆明 650500;
2. 长江师范学院生命科学与技术学院 重庆 408100
Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1
SHEN Dong-ling1, SHANG Shu-mei2, LI Wei-na1, YAN Jin-ping1, HANGAN Ir-bis1
1. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
2. Life Science and Technology Institute, Yangtze Normal University, Chongqing 408100, China
 全文: PDF(947 KB)   HTML
摘要:

为提高嗜热厌氧菌T. calidifontis Rx1的乙醇产率,通过同源重组的方式敲除Rx1乙酸生成途径的乙酸激酶(ack)基因,得到了代谢工程菌Δack突变株。分别以葡萄糖、纤维二糖、木糖和玉米芯酸水解液为底物,研究突变菌株的底物利用、细胞生长和发酵产物的变化情况。结果表明,与野生菌株相比,突变菌株的干重都有所降低,但是乳酸或乙醇的得率显著提高;当以纤维二糖为底物时,突变菌株的乙醇产量达3.60g/L,得率为0.55g/g,远高于突变菌株对其它底物的产量;以玉米芯水解液为底物时,突变菌株的乳酸产量高于野生菌株,而且野生菌乳酸、乙醇的产量都高于以木糖为底物时的产量。

关键词: 高温厌氧菌基因敲除乙醇发酵    
Abstract:

To improve the yield of ethanol by Thermoanaerobacterium calidifontis Rx1, constructed a engineered mutant Δack. First a recombinant plasmid containing mutation cassettes of pta::ack, was rebuild, and the vector was transformed to cell to disrupt the target genes on the chromosomal via the homologous recombination. Then glucose fermentation, cellobiose fermentation, xylose fermentation, acid hydrolyzate of corncob of Δack mutant and the wild strain were performed respectively to produce ethanol and lactate. The results indicate that the acetate of Δack mutant is much lower as compared with the wild. Dray cell weight of the mutant is always lower than that of the wild under four conditions. However, the yield of ethanol or lactate is more than the wild. When Δack mutant used cellobiose to produce ethanol, the yield is 3.60g/L higher than another three substrates. At the same time, it could be exist approximative 40mmol/L acetate in the hydrolysate, so the output of lactate and ethanol of the wild are more than that with xylose fermentation.

Key words: Thermophilic anaerobic bacteria    Gene knockout    Ethanol fermentation
收稿日期: 2015-02-26 出版日期: 2015-07-25
ZTFLH:  Q789  
基金资助:

国家自然科学基金资助项目(21366015)

通讯作者: 伊日布斯     E-mail: irbisc@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

申冬玲, 尚淑梅, 李卫娜, 严金平, 伊日布斯. ack基因敲除对Thermoanaerobacterium calidifontis Rx1发酵代谢的影响[J]. 中国生物工程杂志, 2015, 35(7): 37-44.

SHEN Dong-ling, SHANG Shu-mei, LI Wei-na, YAN Jin-ping, HANGAN Ir-bis. Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1. China Biotechnology, 2015, 35(7): 37-44.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150706        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I7/37


[1] Kumar A, Singh L K, Ghosh S, et al. Bioconversion of lignocellulosic fraction of water-hyacinth hemicelluloses acid hydrolysate to ethanol by pickier styptic. Bioresource Technology, 2009, 100(13): 3293-3297.

[2] Lynd L R, Laser M S, Bransby D, et al. How biotech can transform biofuels. Nat Biotechnol, 2008, 26(2):169-172.

[3] Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 2012, 38(14):522-550.

[4] EI-Zawawy W K, Ibrahim M M, Abdel-Fattah Y R, et al. Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydrate Polymers, 2011, 84(3):865-871.

[5] Sommer P, Georgieva T, Ahring B K. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans, 2004, 32(2):283-289.

[6] Olson D G, McBride J E, Shaw A J, et al. Recent progress in consolidatedbioprocessing. Curr Opin Biotechnol, 2012, 23(3):396-405.

[7] Desai S G, Guerinot M L, Lynd L R. Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol, 2004, 65(5): 600-605.

[8] Shaw A J, Podkaminer K K, Desai S G, et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA, 2008, 105(37): 13769-13774.

[9] Taylor M P, Eley K L, Martin S, et al. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol, 2009, 27(7): 398-405.

[10] Yao S, Mikkelsen M J. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J Mol Microbiol Biotechnol, 2010, 19(3): 123-133.

[11] Li S, Lai C, Cai Y, et al. High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain. Bioresour Technol, 2010, 101(22): 8718-8724.

[12] Park J M, Kim T Y, Lee S Y. Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv, 2009, 27(6): 979-988.

[13] Patnaik R. Engineering complex phenotypes in industrial strains. Biotechnol Prog, 2008, 24(1): 38-47.

[14] Shang S M, Qian L, Zhang X, et al. Thermoanaerobacterium calidifontis sp. nov., a novel anaerobic, thermophilic, ethanol producing bacterium from hot springs in China. Arch Microbiol, 2013, 195(6):439-445.

[15] Hoseki J, Yano T, Y Koyama, et al. Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem, 1999, 126(5): 951-956.

[16] Romano I, Dipasquale L, Orlando P, et al.Thermoanaerobacterium thermostercus sp.nov. a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung. Extremophiles, 2010,14(2): 233-240.

[17] Argyros D A, Tripathi S A, Barrett T F, et al. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Applied and Environmental Microbiology, 2011,77(23):8288-8294.

[18] Yang X, Lai Z, Lai, C, et al. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity. Biotechnol Biofuels, 2013,6(1):124.

[19] Mai V, Wiegel J. Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome. Applied and Environmental Microbiology, 2000,66(11): 4817-4821.

[20] Tripathi S A, Olson D G, Argyros D A, et al. Development of pyrF-based genetic system for targeted gene deletion in clostridium thermocellum and creation of a pta mutant. Applied and Environmental Microbiology, 2010,76(19): 6591-6599.

[21] Shaw A J, Podkaminer K K, Desai S G, et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA, 2008,105(37): 13769-13774.

[22] 尚淑梅,申冬玲,李坤志,等. 高温菌发酵甘露醇高效产乙醇的代谢途径研究. 中国生物工程杂志, 2013,33(10): 73-80. Shang S M, Shen D L, Li K Z, et al. Study on metabolic pathway of efficiently producting ethanol by thermophilic bacterium using mannitol. China Biotechnology, 2013, 33(10): 73-80.

[23] He Q, Lokken P M, Chen S, et al. Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. Bioresour Technol, 2009, 100(23): 5955-5965.

[24] Mai V, Lorenz W W, Wiegel J. Transformation of Thermoanaerobacterium sp. Strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiology Letters, 1997, 148(2):163-167.

[25] Jantama K, Zhang X, Moore J C, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli. Biotechnology and Bioengineering, 2008,101(5): 881-893.

[1] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[2] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[3] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[4] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[5] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[6] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[7] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[8] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[9] 苏春晓,张晓玉,曾晗,陈压西,阮雄中,杨萍. 肝脏特异性CD36基因敲除小鼠的制备及鉴定 *[J]. 中国生物工程杂志, 2018, 38(8): 26-33.
[10] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.
[11] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[12] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[13] 张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.
[14] 杜红燕, 李天明, 刘金雷, 冯惠勇. 构建尿嘧啶磷酸核糖转移酶基因缺失菌株实现Gluconobacter suboxydans基因组无痕修饰[J]. 中国生物工程杂志, 2016, 36(7): 64-71.
[15] 韩海红, 汪俊卿, 王腾飞, 肖静, 韩登兰, 王瑞明. 一种基于单交换原理的地衣芽孢杆菌基因敲除方法及应用[J]. 中国生物工程杂志, 2016, 36(11): 63-69.