Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (1): 68-75    DOI: 10.13523/j.cb.20160110
技术与方法     
基于差分进化算法的酿酒酵母分批补料培养在线自适应控制
张许, 丁健, 高鹏, 高敏杰, 贾禄强, 涂庭勇, 史仲平
江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm
ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF  HTML
摘要:

酿酒酵母分批补料培养中,葡萄糖添加过量会导致乙醇大量积累,破坏细胞结构及功能,降低葡萄糖利用效率;葡萄糖添加不足会限制细胞生长。为解决这一矛盾,提出了一种基于差分进化算法的在线自适应控制策略,并利用计算机仿真方法对该策略、传统的间歇流加、分段恒速流加及PID控制策略的控制性能进行了研究和比较。结果表明,在该控制策略下,发酵液中的乙醇浓度能够被稳定地控制在1g/L的低水平,而细胞浓度却达到34.45g/L的高水平,比采用间歇流加、分段恒速流加及PID控制策略的批次分别提高了243%、18%和29%。由此可知,该自适应控制策略能够将葡萄糖流加速率控制在适宜水平,避免乙醇过量积累的同时保证细胞的快速增殖。

关键词: 酿酒酵母差分进化算法自适应控制乙醇积累系统辨识    
Abstract:

In fed-batch culture of Saccharomyces cerevisiae, excessive glucose addition leads to much ethanol accumulation, destroying structure and function of cell and decreasing glucose utilization efficiency, while insufficient glucose addition limits cell growth. To solve this problem, a self-adaptive control strategy based on differential evolution algorithm was proposed. In addition, performances of the proposed strategy, traditional strategy, were tested and compared using computer simulation. As a result, under the proposed control strategy, ethanol concentration could be maintained at the low level of 1.0g/L, while the biomass concentration could reach to the high level of 34.45g/L, which was 243%, 18% and 29% higher than those under intermittent feed, stepped constant feed and PID control strategy, respectively. In conclusion, the proposed self-adaptive control strategy was capable of controlling glucose feed rate at proper level, and thus ensured the rapid growth of yeast when repressing ethanol accumulation.

Key words: Ethanol accumulation    Adaptive control    Saccharomyces cerevisiae    Differential evolution algorithm    System identification
收稿日期: 2015-09-09 出版日期: 2016-01-11
ZTFLH:  TQ920.1  
基金资助:

国家自然科学基金资助项目(31301408)

通讯作者: 史仲平     E-mail: jnbioprocess@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张许
丁健
高鹏
高敏杰
贾禄强
涂庭勇
史仲平

引用本文:

张许, 丁健, 高鹏, 高敏杰, 贾禄强, 涂庭勇, 史仲平. 基于差分进化算法的酿酒酵母分批补料培养在线自适应控制[J]. 中国生物工程杂志, 2016, 36(1): 68-75.

ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm. China Biotechnology, 2016, 36(1): 68-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160110        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I1/68

[1] 邱玲. 乙肝表面抗原在酿酒酵母中的异源表达及优化. 无锡:江南大学,生物工程学院, 2014. Qiu L. Heterologous Experssion and Optimization of HBsAg in Saccharomyces cerevisiae . Wuxi : Jiangnan University, School of Biotechnology,2014.
[2] 王萍, 王泽建, 张嗣良. 生理代谢参数RQ在指导发酵过程优化中的应用. 中国生物工程杂志, 2013, 33(2) : 88-95. Wang P, Wang Z J, Zhang S L. Fermentation optimization directed by physiological parameter respiratory quotient. China Biotechnol, 2013, 33(2) : 88-95.
[3] Zigova J. Effect of RQ and pre-seed conditions on biomass and galactosyl transferase production during fed-batch culture of S. cerevisiae BT150. J Biotechnol, 2000, 80(1) : 55-62.
[4] Gibson B R, Lawrence S J, Leclaire J P R, et al. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev, 2007, 31(5) : 535-569.
[5] Tokuhiro K, Ishida N, Nagamori E, et al. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol, 2009, 82(5) : 883-890.
[6] Ida Y, Hirasawa T, Furusawa C, et al. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol, 2013, 97(11) : 4811-4819.
[7] Oud B, Flores C L, Gancedo C, et al. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae . Microb Cell Fact, 2012, 11:113.
[8] Arndt M, Hitzmann B. Kalman filter based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae . Biotechnol Prog, 2004, 20(1) : 377-383.
[9] Paalme T, Kevvai K, Vilbaste A, et al. Uptake and accumulation of B-group vitamers in Saccharomyces cerevisiae in ethanol-stat fed-batch culture. World J Microbiol Biotechnol, 2014, 30(9) : 2351-2359.
[10] Hitit Z Y, Boyacioglu H, Ozyurt B, et al. Self-tuning GMV control of glucose concentration in fed-batch baker's yeast production. Appl Biochem Biotechnol, 2014, 172(8) : 3761-3775.
[11] Rhee I L, Ritzka A, Scheper T. On-line monitoring and control of substrate concentrations in biological processes by flow injection analysis systems. Biotechnol Bioproc Eng, 2004, 9(3) : 156-165.
[12] Valentinotti S, Srinivasan B, Holmberg U, et al. Optimal operation of fed-batch fermentations via adaptive control of overflow metabolite. Control Eng Pract, 2003, 11(6) : 665-674.
[13] Vovsik J, Hrncirik P, Náhlík J, et al. Adaptive control of Saccharomyces cerevisiae yeasts fed-batch cultivations. Chem Biochem Eng Q, 2013, 27(3) : 297-306.
[14] Storn R, Price K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim, 1997, 11(4) : 341-359.
[15] Ponsich A, Coello Coello C A. Differential evolution performances for the solution of mixed-integer constrained process engineering problems. Appl Soft Comput, 2011, 11(1) : 399-409.
[16] Mallipeddi R, Suganthan P N, Pan Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput, 2011, 11(2) : 1679-1696.
[17] Piotrowski A P. Differential evolution algorithms applied to neural network training suffer from stagnation. Appl Soft Comput, 2014, 21 : 382-406.
[18] Takamatsu T, Shioya S, Okada Y, et al. Profile control scheme in a bakers' yeast fed-batch culture. Biotechnol Bioeng, 1985, 27(12) : 1675-1686.
[19] Can I, Tosunoglu F, Kahya E. Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Coruh basin, Turkey. Water Environ J, 2012, 26(4) : 567-576.
[20] Liu Y C, Wu J, Liu Y, et al. Analyzing effects of climate change on streamflow in a glacier mountain catchment using an ARMA model. Quatern Int, 2015, 358 : 137-145.

[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[5] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[6] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[7] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[8] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[9] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[10] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[11] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[12] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.
[13] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[14] 梅雪昂, 陈艳, 王瑞钊, 肖文海, 王颖, 李霞, 元英进. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72.
[15] 王瑞钊, 潘才惠, 王颖, 肖文海, 元英进. 高产β-胡萝卜素酿酒酵母菌株的设计与构建[J]. 中国生物工程杂志, 2016, 36(7): 83-91.