Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (12): 114-120    DOI:
    
Research Progress on Prevention and Controlling of Bacterial Contamination in Biomass Fermentation
LIU Hua-qing, LI Hao
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
Download: HTML   PDF(453KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Biomass energy has many advantages, and it is considered to be environmentally-friendly, low cost, renewable and sustainable. However, fermentation of biomass energy is still facing some issues, such as immature technology of non-food raw materials, hypertonic cells, high temperature, product stress, as well as bacterial contamination. Bacterial contamination is a long-standing problem that cannot be completely solved in the biomass fermentation industry. Bacteria usually inhibit fermentation by affecting the fermenting environment and competing substrate and survival environment, etc. If it cannot be effectively controlled, it will seriously affect the production, which may lead to huge economic losses. Traditional way to prevention and control bacterial contamination is adding antibiotics. But the resistance problems have become increasingly prominent, so some new bacteria-prevention methods are paid more and more attention. The recent progress on the causes of bacterial contamination in bio-ethanol and other biomass fermentation, the mechanism of bacterial contamination inhibiting biomass energy fermentation, and the research progress on how to prevent and control bacterial contamination were discussed.

Key wordsBiomass energy      Fermentation      Bacterial contamination      Prevention and controlling     
Received: 12 October 2013      Published: 25 December 2013
ZTFLH:  Q819  
Cite this article:

LIU Hua-qing, LI Hao. Research Progress on Prevention and Controlling of Bacterial Contamination in Biomass Fermentation. China Biotechnology, 2013, 33(12): 114-120.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I12/114

[1] Giampietro M, Martin J R, Ulgiati S. Can we break the addiction to fossil energy? Energy the International Journal, 2012, 37 (1): 2-4.
[2] 高春燕, 刘慧, 叶乃好, 等.大型海藻发酵生产甲烷技术研究. 中外能源, 2011, 16 (4): 27-35. Gao C Y, Liu H, Ye N H, et al. A study on technologies for producing methane on a large scale by fermentation of algae. Sino-global Energy, 2011, 16 (4): 27-35.
[3] 石元春. 生物质能源主导论——为编制国家 "十二五" 规划建言献策. 能源与节能, 2011, (1): 1-7. Shi Y C. Discuss of taking bioenergy as the dominant energy—advice and suggestions for the preparation of the national "Twelfth Five-Year" plan. Energy and Energy Conservation, 2011, (1): 1-7.
[4] 张燕, 佟达, 宋魁彦. 生物质能的热化学转化技术. 森林工程, 2012, 28 (2): 11-13. Zhang Y, Tong D, Song K Y. Study on biomass thermo-chemical conversion techniques. Forest Engineering, 2012, 28 (2): 11-13.
[5] Ramachandran R P, van Rossum G, van Swaaij W P, et al. Evaporation of biomass fast pyrolysis oil: Evaluation of char formation. Environmental Progress and Sustainable Energy, 2009, 28 (3): 410-417.
[6] Westerhof R J, Brilman D W, van Swaaij W P, et al. Effect of temperature in fluidized bed fast pyrolysis of biomass: Oil quality assessment in test units. Industrial and Engineering Chemistry Research, 2009, 49 (3): 1160-1168.
[7] Bridgeman T G, Jones J M, Shield I, et al. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 2008, 87 (6): 844-856.
[8] Wyman C E. What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology, 2007, 25 (4): 153-157.
[9] 赵硕, 李平. 耐高渗 (高糖) 酵母菌株的选育. 安徽: 安徽农业大学, 2010, doi: 10.7666/d.y1735038. Zhao S, Li P. Osmophilic (high sugar) yeast strain breeding. Anhui: Anhui Agriculture University, MSD, 2010, doi: 10.7666/d.y1735038.
[10] Bosshart A, Wagner N, Bechtold M, et al. Improving the thermostability of D-tagatose 3-epimerase for the production of the rare sugar D-psicose. New Biotechnology, 2012, 29: 1.
[11] Knoshaug E P, Zhang M. Butanol tolerance in a selection of microorganisms. Applied Biochemistry and Biotechnology, 2009, 153 (1-3): 13-20.
[12] Manitchotpisit P, Bischoff K M, Price N P, et al. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants. Current Microbiology, 2013, 66(5): 443-449.
[13] Westfall P J, Gardner T S. Industrial fermentation of renewable diesel fuels. Current Opinion in Biotechnology, 2011, 22 (3): 344-350.
[14] 郑进保. 药用植物提取物在控制酒精发酵染菌和抑制肠道有害菌中的初步研究. 厦门大学, 2008, doi: 10.7666/d.y1442878. Zheng J B. Study on medicinal plant extracts using in controlling of ethanol fermentation bacteria and inhibiting harmful intestinal bacteria in preliminary. Xiamen: Xiamen University, MSD, 2008, doi: 10.7666/d.y1442878.
[15] 中国科学院生命科学与生物技术局.2007年工业生物技术发展报告.北京:科学出版社, 2008. Office of Life Science and Technology in Chinese Academy of Sciences. Industrial Biotechnology Development Report in 2007. Beijing: Science Press, 2008.
[16] Brethauer S, Wyman C E. Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology, 2010, 101 (13): 4862-4874.
[17] 魏瑛. 里氏木霉发酵生产木聚糖酶的研究. 江南大学, 2008, 10.7666/d.y1397547. Wei Y. Study on the xylanase fermentation using Trichoderma reesei. Wuxi:Jiangnan University, MSD, 2008, 10.7666/d.y1397547.
[18] 林贝, 赵心清, 葛旭萌, 等. 玉米秸秆酸解副产物对重组酿酒酵母6508-127发酵的影响. 中国生物工程杂志, 2007, 27(7): 61-67. Lin B, Zhao X Q, Ge X M, et al. The effects of dilute acid hydrolysate by-products of corn stover on ethanol fermentation of xylose-utilising Saccharomyces cerevisiae 6508-127. China Biotechnology, 2007, 27 (7): 61-67.
[19] Liu Z L, Slininger P J, Dien B S, et al. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethlfuran. Journal of Industrial Microbiology and Biotechnology, 2004, 31 (8): 345-352.
[20] Klinke H B, Thomsen A B, Ahring B K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology Biotechnology, 2004, 66 (1): 10-26
[21] 谢忠设, 张建民.纤维素乙醇成本接近粮食乙醇. 中国化工报[EB/OL]. http://www.ccin.com.cn/ccin/news/2012/08/07/236290.shtml. Xie Z S, Zhang J M. The cost of cellulosic ethanol is almost the same as grain ethanol. China Chemical Industry News, http://www.ccin.com.cn/ccin/news/2012/08/07/236290.shtml.
[22] Widiastuti H, Kim J Y, Selvarasu S, et al. Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnology Bioengineering, 2011, 108(3): 655-665.
[23] Muthaiyan A, Ricke C S. Current perspectives on detection of microbial contamination in bioethanol fermentors. Bioresource Technology, 2010, 101 (13): 5033-5042.
[24] Schell D J, Dowe N, Ibsen K N, et al. Contamination occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresource Technology, 2007, 98 (15): 2942-2948.
[25] Narendranath N V, Power R. Relationship between pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Applied and Environmental Microbiology, 2005, 71 (5): 2239-2243.
[26] Thomas K C, Hynes S H, Ingledew W M. Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. Journal of Applied Microbiology, 2001, 90 (5): 819-828.
[27] Skinner K A, Leathers T D.Bacterial contaminants of fuel ethanol production. Journal of Industrial Microbiology and Biotechnology, 2004, 31 (9), 401-408.
[28] Graves T, Narendranath N V, Dawson K, et al. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. Journal of Industrial Microbiology and Biotechnology, 2006, 33 (6): 469-474.
[29] Bayrock D P, Ingledew W M.Inhibition of yeast by lactic acid bacteria in continuous culture:nutrient depletion and/or acid toxicity. Journal of Industrial Microbiology and Biotechnology, 2004, 31(8): 362-368.
[30] Katakura Y, Moukamnerd C, Harashima S, et al. Strategy for preventing bacterial contamination by adding exogenous ethanol in solid-state semi-continuous bioethanol production. Journal of Bioscience Bioengineering, 2011, 111 (3): 343-345.
[31] Watanabe I, Nakamura T, Shima J. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production. Journal of Industrial Microbiology Biotechnology, 2008, 35 (10): 1117-1122.
[32] Bischoff K M, Liu S, Leathers T D, et al. Modeling bacterial contamination of fuel ethanol fermentation. Biotechnology and Bioengineering, 2009, 103 (1): 117-122.
[33] Saithong P, Nakamura T, Shima J. Prevention of bacterial contamination using acetate-tolerant Schizosaccharomyces pombe during bioethanol production from molasses. Journal of Bioscience Bioengineer, 2009, 108 (3): 216-219.
[34] Narendranath N V, Thomas K C, Ingledew W M. Urea hydrogen peroxide reduces the numbers of lactobacilli, nourishes yeast, and leaves no residues in the ethanol fermentation. Applied and Environmental Microbiology, 2000, 66 (10): 4187-4192.
[35] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 2013, 110 (9): 3435-3440.
[36] 程书梅, 李慧颖, 顾金兰, 等. 酿酒酵母的乳酸抗性机制. 湖北农业科学, 2012, 51 (2): 367-368. Cheng S M, Li H Y, Gu J L, et al. Study on mechanism of lactic acid resistant of Saccharomyces cerevisiae. Hubei Agricultural Sciences, 2012, 51 (2): 367-368.
[37] Limtong S, Sringiew C, Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by newly isolated Kluyveromyces marxianus. Bioresource Technology, 2007, 98 (17): 3367-3374.
[38] Watanabe T, Srichuwong S, Arakane M, et al. Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol. Bioresource Technology, 2010, 101 (24): 9710-9714.
[39] Solomon E B, Okull D. Utilization of bacteriophage to control bacterial contamination in fermentation processes. U.S., 20090104157, 2009.
[40] Bothast R J, Schlicher M A. Biotechnological processes for conversion of corn into ethanol. Applied Microbiology and Biotechnology, 2005, 67 (1): 19-25.
[41] Gil G, del Monaco S, Cerrutti P, et al. Selective antimicrobial activity of chitosan on beer spoilage bacteria and brewing yeasts. Biotechnology Letter, 2004, 26 (7): 569-574.
[42] Enrique M, Manzanares P, Yuste M, et al. Selectivity and antimicrobial action of bovine lactoferrin derived peptides against wine lactic acid bacteria. Food Microbiology, 2009, 26 (3): 340-346.
[43] Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology, 2007, 98 (12): 2321-2334.
[44] Tang T Q, An M Z, Zhong Y L, et al. Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. Journal of Bioscience Bioengineering, 2010, 109 (1): 41-46.
[45] 王风芹, 楚乐然, 谢慧, 等. 纤维燃料丁醇研究进展. 生物加工过程, 2009, 7 (1): 1-6. Wang F Q, Chu L R, Xie H, et al. Progress and prospective of cellulosic butanol biofuel. Chinese Journal of Bioprocess Engineer, 2009, 7 (1): 1-6.
[46] 孙彦平, 靳艳玲, 李新波, 等. 木质纤维素生产燃料丁醇工艺的研究进展. 中国酿造, 2010, (11): 17-22. Sun Y P, Jin Y L, Li X B, et al. Research progress of butanol production from lignocelluloses. China Brewing, 2010, (11): 17-22.
[47] Ennis B M, Gutierrez N A, Maddox I S. The acetone-butanol-ethanol fermentation: a current assessment. Process Biochemistry, 1986, 21 (5): 131-147.
[48] Anbarasan P, Baer Z C, Sreekumar S, et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature, 2012, 491 (7423): 235-239.
[49] Posten C, Schaub G. Microalgae and terrestrial biomass as source for fuels—a process view. Journal of Biotechnology, 2009, 142 (1): 64-69.
[50] 任云峰. 藻类能源——打开未来能源困局的钥匙? 中国生物柴油, 2010, (5): 6-7. Ren Y F. Algae Energy—the key to open the future energy dilemma? China Biodiesel, 2010, (5):6-7.
[51] Kazamia E, Aldridge D C, Smith A G. Synthetic ecology—a way forward for sustainable algal biofuel production? Journal of Biotechnology, 2012, 162 (1): 163-169.
[52] Lee Y K. Microalgal mass culture systems and methods: their limitations and potential. Journal of Applied Phycology, 2001, 13, 307-315.
[53] Li H, Ma M L, Luo S, et al. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. The International Journal of Biochemistry and Cell Biology, 2012, 44 (7): 1087-1096.
[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[3] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[4] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[9] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[10] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[11] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[12] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[13] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[14] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[15] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.