Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (11): 16-26    DOI: 10.13523/j.cb.2305017
    
Analysis of Cold-, Heat-, and ABA-responsive cis Elements in Tomato SlNAC1 Promoter
LI De-xin1,2,YUE Lu3,TAO Xiang4,LIAO Hai1,ZHOU Jia-yu1,**(),HUANG Wei-zao2,**()
1 School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
3 College of Resources and Environment, Aba Teachers University, Chengdu 623002, China
4 College of Life Science, Sichuan Normal University, Chengdu 610101, China
Download: HTML   PDF(2523KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tomato transcription factor SlNAC1 has been reported to regulate several biotic and abiotic stress responses, but its upstream regulatory transcription factors remain unknown, which limits our understanding of its molecular mechanism of stress responses. We constructed series of 5'-deleted SlNAC1 promoters (2 039 bp, 1 508 bp, 1 373 bp and 777 bp upstream of start codon) -driven GUS transgenic Nicotiana benthamiana and analyzed quantitatively their GUS activity under cold, heat and ABA treatment conditions in order to identify cold-, heat-, and ABA-responsive cis elements. Our results show that the GUS activity of 2 039 bp promoter-driven transgenic Nicotiana benthamiana increased much higher than that of any other transgenic Nicotiana benthamiana and wild-type Nicotiana benthamiana after cold and heat treatment, while the GUS activity of 1 508 bp promoter-driven transgenic Nicotiana benthamiana increased much higher than that of any other transgenic Nicotiana benthamiana and wild-type Nicotiana benthamiana after ABA treatment. These results indicate that both cold-responsive and heat-responsive cis elements were located in the region from -2 039 bp to -1 508 bp, and ABA-responsive cis element(s) was(were) located in the region from -1 508 bp to -777 bp. According to cis elements' prediction of SlNAC1 promoter, there were only one cold/heat/drought/salt-responsive cis element DRE/CRT in the region from -2 039 bp to -1 508 bp and only one ABA-responsive cis element ABRE in the region from -1 508 bp to -777 bp. Therefore, these two cis elements will be used as candidates for subsequent site-directed mutagenesis validation and screening of the upstream regulatory transcription factor of SlNAC1.



Key wordsTranscription factor      SlNAC1      Promoter      cis element      Stress-responsive     
Received: 11 May 2023      Published: 01 December 2023
ZTFLH:  Q789  
Corresponding Authors: **Jia-yu ZHOU,Wei-zao HUANG     E-mail: spinezhou@home.swjtu.edu.cn;huangwz@cib.ac.cn
Cite this article:

LI De-xin, YUE Lu, TAO Xiang, LIAO Hai, ZHOU Jia-yu, HUANG Wei-zao. Analysis of Cold-, Heat-, and ABA-responsive cis Elements in Tomato SlNAC1 Promoter. China Biotechnology, 2023, 43(11): 16-26.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2305017     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I11/16

引物名称 引物序列 引物用途
SlNAC1-qPCR-F
SlNAC1-qPCR-R
Actin-F
Actin-R
CTCTGCTGGCAAGAACAA
GGTGGCATCGGTGCTAAT
GGAATGGGACAGAAGGAT
CAGTCAGGAGAACAGGGT
For the qRT-PCR analysis of SlNAC1


Table 1 Information of qRT-PCR primers
引物名称 引物序列 引物用途
AC
AD
RBSP1
RBSP2
RBSP3
LBSP1
LBSP2
LBSP3
ACGATGGACTCCAGAG
ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA
CAGATTATTTGGATTGAGAGTGAA
ACGATGGACTCCAGTCCGGCCGATAGTGACCTTAGGCGACTTTTG
ATCAGATTGTCGTTTCCCGCCTTC
GAACAACACTCAACCCTATCTCGG
ACGATGGACTCCAGTCCGGCCCGGAACCACCATCAAACAGGAG
CTGTTGCCCGTCTCACTGGT
For identification of T-DNA insertion sites
SlNAC1Pro1-F
SlNAC1Pro1-R
SlNAC1Pro2-F
SlNAC1Pro2-R
SlNAC1Pro3-F
SlNAC1Pro3-R
SlNAC1Pro4-F
SlNAC1Pro4-R
GTCATCATAGGGACGGAGTCTC
CCTATTTGTTCCCGTGATAAGAT
GCTGAATTTCCGTTAGTCGTAGG
GCAATCAGAAGGCATTTCTCCA
ACCACGATTGATTCCCTTTA
AGACATTGTATCAAACGAGTGC
GAATCGCTTTGCTCACCTCC
GAGACGAAGTCAGCAGTGGC
For identification of transgenic homozygote
Table 2 Information of primers
Fig.1 Relative expression level of SlNAC1 under cold, heat and ABA treatments Asterisk represents significant difference (** P<0.01, *** P<0.001, Student’s t test)
Fig.2 Prediction of stress-responsive cis elements in SlNAC1 promoter Red vertical lines show the 5'-positions of series of 5'-deleted SlNAC1 promoters; Stress-responsive cis-elements are underlined. W-box: The recognition site for WRKY transcription factors with the core sequence of TGAC; GT1GMSCAM4: The recognition site for GT transcription factors with the core sequence of GAAAAA; MYBCORE: The recognition site for MYB transcription factors with the core sequence of CNGTTR; DRE/CRT: The recognition site for DREB/CBF transcription factors with the core sequence of RCCGAC; ABRE: The recognition site for MYB/MYC transcription factors with the core sequence of PyACGTG(G/T)C; CuRE: The copper- and oxygen-responsive element with the core sequence of GTAC; MYCCONSENSUSAT: The low-temperature-responsive element with the core sequence of CANNTG; MYB1AT: The dehydration-responsive element with the core sequence of WAACCA; MYB1LEPR: The pathogen-response element with the core sequence of GTTAGTT; LTRE: The low-temperature-responsive element with the core sequence of CCGAAA; CRTDREHVCBF2: The low-temperature-responsive element with the core sequence of GTCGAC
Fig.3 Schematic diagram of GUS expression constructs driven by series of 5'-deleted SlNAC1 promoters and their T-DNA insertion sites on chromosome LB: Left border of T-DNA; RB: Right border of T-DNA
Fig. 4 GUS histochemical staining and GUS activity under cold treatment A. GUS histochemical staining under cold treatment B. Quantitative analysis of GUS activity under cold treatment. SlNAC1Pro1: Transgenic Nicotiana benthamiana plants driven by the 2 039 bp promoter; SlNAC1Pro2: Transgenic Nicotiana benthamiana plants driven by the 1 508 bp promoter; SlNAC1Pro3: Transgenic Nicotiana benthamiana plants driven by the 1 373 bp promoter; SlNAC1Pro4: Transgenic Nicotiana benthamiana plants driven by the 777 bp promoter. The scale is 2 mm. Asterisk represents significant difference. *** P< 0.001, Student’s t test
Fig.5 GUS histochemical staining and GUS activity under heat treatment A. GUS histochemical staining under heat treatment B. Quantitative analysis of GUS activity under heat treatment. SlNAC1Pro1: Transgenic Nicotiana benthamiana plants driven by the 2 039 bp promoter; SlNAC1Pro2: Transgenic Nicotiana benthamiana plants driven by the 1 508 bp promoter; SlNAC1Pro3: Transgenic Nicotiana benthamiana plants driven by the 1 373 bp promoter; SlNAC1Pro4: Transgenic Nicotiana benthamiana plants driven by the 777 bp promoter. The scale is 2 mm. Asterisk represents significant difference. *** P<0.001, Student’s t test
Fig.6 GUS histochemical staining and GUS activity under ABA treatment A. GUS histochemical staining under ABA treatment B. Quantitative analysis of GUS activity under ABA treatment. SlNAC1Pro1: Transgenic Nicotiana benthamiana plants driven by the 2 039 bp promoter; SlNAC1Pro2: Transgenic Nicotiana benthamiana plants driven by the 1 508 bp promoter; SlNAC1Pro3: Transgenic Nicotiana benthamiana plants driven by the 1 373 bp promoter; SlNAC1Pro4: Transgenic Nicotiana benthamiana plants driven by the 777 bp promoter. The scale is 2 mm. Asterisk represents significant difference. *** P<0.001, Student’s t test
[1]   Calanca P P. Effects of abiotic stress in crop production. Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Cham: Springer, 2017: 165-180.
[2]   Godoy F, Olivos-Hernández K, Stange C, et al. Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plants (Basel, Switzerland), 2021, 10(2): 186.
[3]   Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029
[4]   Baillo E H, Kimotho R N, Zhang Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10(10): 771.
doi: 10.3390/genes10100771
[5]   Souer E, van Houwelingen A, Kloos D, et al. The No apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170.
doi: 10.1016/s0092-8674(00)81093-4 pmid: 8612269
[6]   Nuruzzaman M, Sharoni A M, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology, 2013, 4: 248.
doi: 10.3389/fmicb.2013.00248 pmid: 24058359
[7]   Nakano Y, Yamaguchi M, Endo H, et al. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Frontiers in Plant Science, 2015, 6: 288.
doi: 10.3389/fpls.2015.00288 pmid: 25999964
[8]   Forlani S, Mizzotti C, Masiero S. The NAC side of the fruit: tuning of fruit development and maturation. BMC Plant Biology, 2021, 21(1): 238.
doi: 10.1186/s12870-021-03029-y pmid: 34044765
[9]   Ohnishi T, Sugahara S, Yamada T, et al. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes & Genetic Systems, 2005, 80(2): 135-139.
[10]   Nakashima K, Tran L S P, Van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC 6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal: for Cell and Molecular Biology, 2007, 51(4): 617-630.
doi: 10.1111/tpj.2007.51.issue-4
[11]   Qu X X, Zou J J, Wang J X, et al. A rice R2R3-type MYB transcription factor OsFLP positively regulates drought stress response via OsNAC. International Journal of Molecular Sciences, 2022, 23(11): 5873.
doi: 10.3390/ijms23115873
[12]   Lee D K, Chung P J, Jeong J S, et al. The rice OsNAC 6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal, 2017, 15(6): 754-764.
doi: 10.1111/pbi.2017.15.issue-6
[13]   Ma N N, Zuo Y Q, Liang X Q, et al. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiologia Plantarum, 2013, 149(4): 474-486.
doi: 10.1111/ppl.2013.149.issue-4
[14]   Selth L A, Dogra S C, Rasheed M S, et al. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. The Plant Cell, 2005, 17(1): 311-325.
doi: 10.1105/tpc.104.027235
[15]   Huang W Z, Miao M, Kud J, et al. SlNAC1, a stress-related transcription factor, is fine-tuned on both the transcriptional and the post-translational level. New Phytologist, 2013, 197 (4): 1214-1224.
doi: 10.1111/nph.12096 pmid: 23278405
[16]   Liang X Q, Ma N N, Wang G D, et al. Suppression of SlNAC1 reduces heat resistance in tomato plants. Biologia Plantarum, 2015, 59(1): 92-98.
doi: 10.1007/s10535-014-0477-7
[17]   Ma N N, Feng H L, Meng X, et al. Overexpression of tomato SlNAC 1 transcription factor alters fruit pigmentation and softening. BMC Plant Biology, 2014, 14(1): 1-14.
doi: 10.1186/1471-2229-14-1
[18]   Meng C, Yang D Y, Ma X C, et al. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Journal of Plant Physiology, 2016, 193: 88-96.
doi: 10.1016/j.jplph.2016.01.014 pmid: 26962710
[19]   古袁扬, 乐露, 马欣荣, 等. 番茄SINAC1基因启动子的盐应答功能分析. 应用与环境生物学报, 2021, 27(4): 988-993.
[19]   Gu Y Y, Le L, Ma X R, et al. Salt response analysis of tomato SINAC1 promoter. Chinese Journal of Applied and Environmental Biology, 2021, 27(4): 988-993.
[20]   Yue L, Zhuang Y, Gu Y Y, et al. Heterologous expression of Solanum tuberosum NAC1 gene confers enhanced tolerance to salt stress in transgenic Nicotiana benthamiana. Journal of Plant Biology, 2021, 64(6): 531-542.
doi: 10.1007/s12374-021-09327-0
[21]   Wang C H, Gao G, Cao S X, et al. Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon, Cucumis melo var. makuwa Makino. BMC Plant Biology, 2019, 19(1): 1-14.
doi: 10.1186/s12870-018-1600-2
[22]   Nguyen N H, Vu N T, Cheong J J. Transcriptional stress memory and transgenerational inheritance of drought tolerance in plants. International Journal of Molecular Sciences, 2022, 23(21): 12918.
doi: 10.3390/ijms232112918
[23]   Mao H D, Jian C, Cheng X X, et al. The wheat ABA receptor gene TaPYL1-1 B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnology Journal, 2022, 20(5): 846-861.
doi: 10.1111/pbi.v20.5
[24]   Wei S B, Li X, Lu Z F, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377(6604): eabi8455.
doi: 10.1126/science.abi8455
[25]   Hwarari D, Guan Y L, Ahmad B, et al. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. International Journal of Molecular Sciences, 2022, 23(3): 1549.
doi: 10.3390/ijms23031549
[26]   Lee M, Dominguez-Ferreras A, Kaliyadasa E, et al. Mediator subunits MED16, MED14, and MED 2 are required for activation of ABRE-dependent transcription in Arabidopsis. Frontiers in Plant Science, 2021, 12: 649720.
doi: 10.3389/fpls.2021.649720
[27]   Jiang Y, Peng D, Bai L P, et al. Molecular switch for cold acclimation: anatomy of the cold-inducible promoter in plants. Biochemistry (Moscow), 2013, 78(4): 342-354.
doi: 10.1134/S0006297913040032
[1] JIANG Hui-hui, WANG Qiang, RAO Zhi-ming, ZHANG Xian. Research Progress of the Promoter Engineering in Saccharomyces cerevisiae[J]. China Biotechnology, 2023, 43(11): 78-91.
[2] HOU Si-jia,ZHANG Qian-qian,SUN Zhen-mei,CHEN Jing,MENG Jian-qiao,LIANG Dan,WU Rong-ling,GUO Yun-qian. Research Progress of WIND Transcription Factor Responsing to Wound Stress and Organ Growth in Plants[J]. China Biotechnology, 2022, 42(4): 85-92.
[3] Xiang-zhi LIU,Chi CHENG,Yue ZHAO,Chao-jun WANG,Ying ZHANG,Chuang XUE. Induction and Regulation of Cellulase Synthesis in Trichoderma reesei[J]. China Biotechnology, 2022, 42(10): 93-104.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[6] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[7] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[8] XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application[J]. China Biotechnology, 2020, 40(6): 20-30.
[9] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[10] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[11] HUANG Yu,HUANG Shu-ting,ZHANG Xi-mei,LIU Yan. Cloning and Functional Analysis of the Promoter of HSP70 Gene in Gobiocypris rarus[J]. China Biotechnology, 2019, 39(10): 9-16.
[12] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[13] Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI. The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence[J]. China Biotechnology, 2018, 38(4): 24-29.
[14] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[15] Jia-zhen WANG,Lun-guang YAO,Feng WANG,Yun-chao KAN,Jin-ping LUO,Qian-qian HUANG,Jian-ping DUAN. Cloning and Activity Analysis of a Midgut-specific Promoter in Silkworm (Bombyx mori)[J]. China Biotechnology, 2018, 38(2): 13-17.